cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067550 a(n) = (n-1)!(n+2)!/(3*2^n).

Original entry on oeis.org

1, 2, 10, 90, 1260, 25200, 680400, 23814000, 1047816000, 56582064000, 3677834160000, 283193230320000, 25487390728800000, 2650688635795200000, 315431947659628800000, 42583312934049888000000, 6472663565975582976000000, 1100352806215849105920000000
Offset: 1

Views

Author

Robert G. Wilson v, Jan 28 2002

Keywords

Comments

Determinant of n X n matrix whose diagonal are the first n triangular numbers and all other elements are 1's.

Examples

			The determinant begins:
  1  1  1  1  1  1  1 ...
  1  3  1  1  1  1  1 ...
  1  1  6  1  1  1  1 ...
  1  1  1 10  1  1  1 ...
  1  1  1  1 15  1  1 ...
  1  1  1  1  1 21  1 ...
		

Crossrefs

Cf. A000096.

Programs

  • GAP
    A067550:=List([1..20],n->Factorial(n-1)*Factorial(n+2)/(3*2^n)); # Muniru A Asiru, Mar 05 2018
    
  • Maple
    d:=(i,j)->`if`(i<>j,1,i*(i+1)/2):
    seq(LinearAlgebra[Determinant](Matrix(n,d)),n=1..20); # Muniru A Asiru, Mar 05 2018
  • Mathematica
    Table[ Det[ DiagonalMatrix[ Table[ i(i + 1)/2 - 1, {i, 1, n} ] ] + 1 ], {n, 1, 20} ]
    Table[(n-1)!(n+2)!/3/2^n,{n,1,20}] (* Alexander Adamchuk, May 20 2006 *)
  • PARI
    a(n) = (n-1)!*(n+2)!/(3*2^n); \\ Altug Alkan, Mar 05 2018

Formula

a(n+1)/a(n) = A000096(n) = n(n+3)/2. - Alexander Adamchuk, May 20 2006
From Amiram Eldar, Feb 02 2023: (Start)
Sum_{n>=1} 1/a(n) = 3*BesselI(3, 2*sqrt(2))/sqrt(2).
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*BesselJ(3, 2*sqrt(2))/sqrt(2). (End)

Extensions

a(18) from Muniru A Asiru, Mar 05 2018