A067558 Sum of squares of proper divisors of n.
0, 1, 1, 5, 1, 14, 1, 21, 10, 30, 1, 66, 1, 54, 35, 85, 1, 131, 1, 146, 59, 126, 1, 274, 26, 174, 91, 266, 1, 400, 1, 341, 131, 294, 75, 615, 1, 366, 179, 610, 1, 736, 1, 626, 341, 534, 1, 1106, 50, 755, 299, 866, 1, 1184, 147, 1114, 371, 846, 1, 1860, 1, 966, 581, 1365
Offset: 1
Examples
a(12) = 1^2 + 2^2 + 3^2 + 4^2 + 6^2 = 1 + 4 + 9 + 16 + 36 = 66.
Links
- T. D. Noe, Table of n, a(n) for n=1..10000
Programs
-
Mathematica
Table[DivisorSigma[2, n] - n^2, {n, 1, 64}] (* Jean-François Alcover, Mar 01 2019 *)
-
PARI
a(n)=sigma(n,2)-n^2 \\ Charles R Greathouse IV, Dec 07 2011
Formula
a(n) = A001157(n) - n^2.
a(n) = 1 if and only if n is prime.
Dirichlet g.f.: zeta(s-2)*(zeta(s) - 1). - Ilya Gutkovskiy, Sep 08 2016
Sum_{k=1..n} a(k) ~ (zeta(3)-1) * n^3 / 3. - Amiram Eldar, Dec 31 2024