cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A084308 Duplicate of A067605.

Original entry on oeis.org

2, 6, 11, 24, 42, 121, 30, 319, 99, 1592, 344, 574, 3786, 4196, 650, 4619, 217, 1532
Offset: 1

Views

Author

Keywords

A058264 Smallest prime p of two consecutive primes, p < q, such that gcd( p-1, q-1 ) = 2n.

Original entry on oeis.org

3, 13, 31, 89, 181, 661, 113, 2113, 523, 13421, 2311, 4177, 35543, 39901, 4831, 44417, 1327, 12853, 119321, 52321, 82657, 36389, 136897, 203713, 95651, 59281, 255259, 178697, 531919, 427621, 2640581, 1414849, 643303, 3021173, 175141, 1770337, 514967, 1004797, 1354393
Offset: 1

Views

Author

Labos Elemer, Dec 06 2000

Keywords

Comments

Since all consecutive primes, p < q and p greater than 2, are odd, therefore gcd( p-1, q-1 ) must be even.

Examples

			a(4) = 89 because gcd(89-1, 97-1) = gcd(8*11, 8*16) = 8 = 2*4 and these primes are the smallest with this property.
a(49) = 604073 because gcd(604073-1, 604171-1) = gcd(6164*98, 6165*98) = 98 = 2*49.
		

Crossrefs

Programs

  • Mathematica
    a = Table[0, {100}]; p = 3; q = 5; Do[q = Prime[n + 1]; d = GCD[p - 1, q - 1]/2; If[d < 101 && a[[d]] == 0, a[[d]] = n]; b = c, {n, 2, 10^7}]; a
    With[{tsp={#[[1]],#[[2]],GCD[#[[1]]-1,#[[2]]-1]}&/@Partition[Prime[ Range[ 300000]],2,1]}, Transpose[Flatten[Table[Select[tsp, Last[#]==2n&,1],{n,40}],1]][[1]]] (* Harvey P. Dale, Jul 07 2013 *)
  • PARI
    list(len) = {my(v = vector(len), c = 0, p = 3, i); forprime(q = 5, , i = gcd(p-1, q-1)/2; if(i <= len && v[i] == 0, v[i] = p; c++; if(c == len, break)); p = q); v;} \\ Amiram Eldar, Mar 05 2025

Formula

a(n) = prime(A067605(n)). - Amiram Eldar, Mar 05 2025

Extensions

Edited by Robert G. Wilson v, Feb 01 2002

A080373 a(n) is the smallest number k such that GCD of n values of prime(j)-1 for successive j values starting with k is greater than 2, where prime(j) = j-th prime.

Original entry on oeis.org

3, 6, 24, 77, 271, 271, 1395, 1395, 1395, 13717, 34369, 172146, 172146, 804584, 804584, 804584, 12762142, 16138563, 16138563, 56307979, 56307979, 56307979, 56307979, 56307979, 1857276773, 3511121443
Offset: 1

Views

Author

Labos Elemer, Feb 26 2003

Keywords

Examples

			For n = 2: a(2) = 6 = A067605(2).
For n = 3: a(3) = 24 means: firstly occurs that for three consecutive p-1 terms GCD[prime(24)-1, prime(25)-1, prime(26)-1] = GCD[88, 96, 100] = 4 > 2;
		

Crossrefs

Programs

  • PARI
    a(n) = {my(k = 0, v = vector(n, i, prime(i)-1)); if(gcd(v) > 2, return(0)); forprime(p = v[n]+1, , k++; v = concat(vecextract(v, "^1"), p-1); if(gcd(v) > 2, return(k)));} \\ Amiram Eldar, Jun 22 2024

Formula

a(n) = Min{x; gcd[prime(x)-1, ..., prime(x+n-1)] > 2}, where prime() = A000040().

Extensions

a(1) corrected and a(17)-a(26) added by Amiram Eldar, Jun 22 2024
Showing 1-3 of 3 results.