cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067614 a(n) is the second partial quotient in the simple continued fraction for sqrt(prime(n)).

Original entry on oeis.org

2, 1, 4, 1, 3, 1, 8, 2, 1, 2, 1, 12, 2, 1, 1, 3, 1, 1, 5, 2, 1, 1, 9, 2, 1, 20, 6, 2, 2, 1, 3, 2, 1, 1, 4, 3, 1, 1, 1, 6, 2, 2, 1, 1, 28, 9, 1, 1, 15, 7, 3, 2, 1, 1, 32, 4, 2, 2, 1, 1, 1, 8, 1, 1, 1, 1, 5, 2, 1, 1, 1, 1, 6, 3, 2, 1, 1, 1, 40, 4, 2, 1, 1, 1, 1, 21, 5, 2, 2, 1, 1, 1, 14, 6, 2, 2, 1, 1, 1
Offset: 1

Views

Author

Roger L. Bagula, Feb 01 2002

Keywords

Examples

			For n=8, prime(n)=19, floor(sqrt(19))=4 and 1/(sqrt(19)-4) = 2.786..., so a(8)=2.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Floor[1/(Sqrt[Prime[n]]-Floor[Sqrt[Prime[n]]])]
  • PARI
    a(n) = my(r); sqrtint(prime(n),&r)<<1 \ r; \\ Kevin Ryde, May 06 2022

Formula

a(n) = floor(1/(sqrt(prime(n))-floor(sqrt(prime(n))))), where prime(n) is the n-th prime.
a(n) = floor(2*s/r) where s = floor(sqrt(p)) = A000006(n), r = p - s^2 = A056892(n), and p = prime(n). - Kevin Ryde, May 06 2022

Extensions

Edited by Dean Hickerson, Feb 14 2002