A067614 a(n) is the second partial quotient in the simple continued fraction for sqrt(prime(n)).
2, 1, 4, 1, 3, 1, 8, 2, 1, 2, 1, 12, 2, 1, 1, 3, 1, 1, 5, 2, 1, 1, 9, 2, 1, 20, 6, 2, 2, 1, 3, 2, 1, 1, 4, 3, 1, 1, 1, 6, 2, 2, 1, 1, 28, 9, 1, 1, 15, 7, 3, 2, 1, 1, 32, 4, 2, 2, 1, 1, 1, 8, 1, 1, 1, 1, 5, 2, 1, 1, 1, 1, 6, 3, 2, 1, 1, 1, 40, 4, 2, 1, 1, 1, 1, 21, 5, 2, 2, 1, 1, 1, 14, 6, 2, 2, 1, 1, 1
Offset: 1
Examples
For n=8, prime(n)=19, floor(sqrt(19))=4 and 1/(sqrt(19)-4) = 2.786..., so a(8)=2.
Programs
-
Mathematica
a[n_] := Floor[1/(Sqrt[Prime[n]]-Floor[Sqrt[Prime[n]]])]
-
PARI
a(n) = my(r); sqrtint(prime(n),&r)<<1 \ r; \\ Kevin Ryde, May 06 2022
Formula
a(n) = floor(1/(sqrt(prime(n))-floor(sqrt(prime(n))))), where prime(n) is the n-th prime.
a(n) = floor(2*s/r) where s = floor(sqrt(p)) = A000006(n), r = p - s^2 = A056892(n), and p = prime(n). - Kevin Ryde, May 06 2022
Extensions
Edited by Dean Hickerson, Feb 14 2002