A067623 Consider the power series (x+1)^(1/3)=1+x/3-x^2/9+5x^3/81+...; sequence gives denominators of coefficients.
1, 3, 9, 81, 243, 729, 6561, 19683, 59049, 1594323, 4782969, 14348907, 129140163, 387420489, 1162261467, 10460353203, 31381059609, 94143178827, 2541865828329, 7625597484987, 22876792454961, 205891132094649, 617673396283947
Offset: 0
Programs
-
Maple
A067623 := n -> denom(binomial(1/3,n)): seq(A067623(n), n=0..21); # Peter Luschny, Apr 07 2016
-
Mathematica
Table[Denominator@ Binomial[1/3, n], {n, 0, 22}] (* Michael De Vlieger, Apr 07 2016 *)
Formula
a(n) = 3^A004128(n).
a(n) = 3^n*a(floor(n/3)). - Vladeta Jovovic, Mar 01 2004
a(n) = denominator(binomial(1/3, n)). - Peter Luschny, Apr 07 2016
Comments