A067627 Triangle T(n,k) = number of conjugacy classes of partitions of n using only k types of piles, read by rows.
1, 1, 1, 1, 1, 2, 3, 1, 1, 3, 2, 1, 6, 1, 3, 7, 2, 5, 9, 2, 1, 8, 11, 2, 1, 13, 14, 1, 3, 19, 15, 3, 5, 27, 19, 1, 11, 34, 22, 2, 1, 15, 49, 23, 2, 1, 27, 59, 28, 3, 3, 39, 78, 30, 1, 5, 60, 93, 34, 3, 11, 82, 118, 36, 1, 18, 115, 140, 41, 3, 1, 30, 155, 170, 42, 2, 1, 48
Offset: 1
Examples
Triangle turned on its side begins: 1.1.1.2.1.2.1.2.2..2..1..3..1..2..2....etc A038548 ....1.1.3.3.6.7.9.11.14.15.19.22.23....etc A270060 ..........1.1.3.5..8.13.19.27.34.49....etc ...................1..1..3..5.11.15....etc
Programs
-
Maple
compareL := proc(L1,L2) if nops(L1) < nops(L2) then -1 ; elif nops(L1) > nops(L2) then 1; else for i from 1 to nops(L1) do if op(i,L1) > op(i,L2) then return 1 ; elif op(i,L1) < op(i,L2) then return -1 ; end if; end do: 0 ; end if; end proc: A067627 := proc(n,k) local a,p,s,pc ; a := 0 ; for p in combinat[partition](n) do s := convert(p,set) ; if nops(s) = k then pc := combinat[conjpart](p) ; if compareL(p,pc) <= 0 then a := a+1 ; end if; end if; end do: a ; end proc: for n from 1 to 30 do for k from A003056(n) to 1 by -1 do printf("%4d,",A067627(n,k)) ; end do: printf("\n") ; end do: # R. J. Mathar, May 08 2019
Extensions
More terms from R. J. Mathar, May 08 2019
Comments