A270060 Number of incomplete rectangles of area n.
0, 0, 1, 1, 3, 3, 6, 7, 9, 11, 14, 15, 19, 22, 23, 28, 30, 34, 36, 41, 42, 51, 49, 57, 55, 68, 64, 75, 71, 84, 79, 95, 89, 106, 92, 116, 104, 127, 116, 134, 121, 150, 130, 160, 143, 172, 148, 188, 156, 193, 177, 209, 177, 226, 185, 231, 210, 246, 207, 269, 218, 272, 239, 287, 238, 312, 250, 317, 279, 320, 271, 359, 283, 355, 316
Offset: 1
Keywords
Examples
n = 3 .___. | ._| |_| . n = 4 ._____. | .___| |_| . n = 5 ._______. ._____. ._____. | ._____| | ._| | .___| |_| |___| | | |_| . The three solutions for n = 6: XXXXX X ..... XXXX XX ..... XXXX X X .....
Programs
-
Maple
# see A067627(n,k=2).
-
Pseudocode
/* rectangle : LL = long side, SS = short side removed corner : L = long side, S = short side */ { int a[100]; int LL,SS,L,S,area; for(area:=1;area<=100;area++){ a[area]:=0; }; for(LL:=1;LL<=100;LL++){ for(SS:=1;SS<=LL;SS++){ for(L:=1;L<=LL;L++){ for(S:=1;S<=LL;S++){ area=LL*SS-L*S; if( area>=1 && area<=100 ){ if( L>=S || L
SS ){ a[area]++; }; }; }; }; }; }; for(area:=1;area<=100;area++){ print a[area]; }; }
Formula
G.f.: sum(sum(x^(i+j)/(2*(1-x^i)*(1-x^j))+x^(i^2-j^2)/2,j=1..i-1),i=1..infinity). See the integer partition comment above. Lara Pudwell, Apr 03 2016
Comments