A067656 Numbers n such that n!*B(2n) is an integer, where B(2n) are the Bernoulli numbers.
7, 13, 17, 19, 24, 25, 27, 31, 32, 34, 37, 38, 43, 45, 47, 49, 55, 57, 59, 61, 62, 64, 67, 71, 73, 76, 77, 79, 80, 84, 85, 87, 91, 92, 93, 94, 97, 101, 103, 104, 107, 109, 110, 115, 117, 118, 121, 122, 123, 124, 127, 129, 132, 133, 137, 139, 142, 143, 144, 145, 147
Offset: 1
Keywords
Links
- Alexander Adamchuk, Oct 05 2006, Table of n, a(n) for n = 1..565
Crossrefs
Cf. A166602. - R. J. Mathar, Feb 14 2010
Programs
-
Mathematica
Select[Range[2,1000],Numerator[ #(#+1)(2#+1)/6/#!^2]==1&] (* Alexander Adamchuk, Oct 05 2006 *) Select[Range[1000],!PrimeQ[ #+1]&&!PrimeQ[2#+1]&] (* Alexander Adamchuk, Oct 05 2006 *)
Formula
Also numbers n>1 such that A000330[n] = Sum[k^2,{k,1,n}] = n(n+1)(2n+1)/6 divides A001044[n] = Product[k^2,{k,1,n}] = (n!)^2. Also numbers n>1 such that Numerator[n(n+1)(2n+1)/6 /(n!)^2] = 1. - Alexander Adamchuk, Oct 05 2006
Comments