A067686 a(n) = a(n-1) * a(n-1) - B * a(n-1) + B, a(0) = 1 + B for B = 7.
8, 15, 127, 15247, 232364287, 53993160246468367, 2915261353400811631533974206368127, 8498748758632331927648392184620600167779995785955324343380396911247
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437.
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (original plus references that F.Q. forgot to include - see last page!)
- Stanislav Drastich, Rapid growth sequences, arXiv:math/0202010 [math.GM], 2002.
- S. W. Golomb, On certain nonlinear recurring sequences, Amer. Math. Monthly 70 (1963), 403-405.
- S. Mustonen, On integer sequences with mutual k-residues
- Seppo Mustonen, On integer sequences with mutual k-residues [Local copy]
- Index entries for sequences of form a(n+1)=a(n)^2 + ....
Crossrefs
Programs
-
Mathematica
RecurrenceTable[{a[0]==8, a[n]==a[n-1]*(a[n-1]-7)+7}, a, {n, 0, 10}] (* Vaclav Kotesovec, Dec 17 2014 *) NestList[#^2-7#+7&,8,10] (* Harvey P. Dale, Jan 26 2025 *)
Formula
a(n) ~ c^(2^n), where c = 3.3333858371760195832345950846454963835549715770476958790043961891683146201... . - Vaclav Kotesovec, Dec 17 2014
Comments