cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A072905 a(n) is the least k > n such that k*n is a square.

Original entry on oeis.org

4, 8, 12, 9, 20, 24, 28, 18, 16, 40, 44, 27, 52, 56, 60, 25, 68, 32, 76, 45, 84, 88, 92, 54, 36, 104, 48, 63, 116, 120, 124, 50, 132, 136, 140, 49, 148, 152, 156, 90, 164, 168, 172, 99, 80, 184, 188, 75, 64, 72, 204, 117, 212, 96, 220, 126, 228, 232, 236, 135, 244, 248
Offset: 1

Views

Author

Benoit Cloitre, Aug 10 2002

Keywords

Comments

From Peter Kagey, Jun 22 2015: (Start)
a(n) is a bijection from the positive integers to A013929 (numbers that are not squarefree). Proof:
(1) Injection: Suppose that b
(2) Surjection: Given some number k in A013929, a(A007913(k)*(A000188(k)-1)^2.) = k (End)

Examples

			12 is the smallest integer > 3 such that 3*12 = 6^2 is a perfect square, hence a(3) = 12.
		

Crossrefs

Programs

  • Haskell
    a072905 n = head [k | k <- [n + 1 ..], a010052 (k * n) == 1]
    -- Reinhard Zumkeller, Feb 07 2015
    
  • Maple
    f:= proc(n) local F,f,x,y;
         F:= ifactors(n)[2];
         x:= mul(`if`(f[2]::odd,f[1],1),f=F);
         y:= mul(f[1]^floor(f[2]/2),f=F);
         x*(y+1)^2
    end proc:
    map(f, [$1..100]); # Robert Israel, Jun 23 2015
  • Mathematica
    a[n_] := For[k = n+1, True, k++, If[IntegerQ[Sqrt[k*n]], Return[k]]]; Array[a, 100] (* Jean-François Alcover, Jan 26 2018 *)
  • PARI
    a(n)=if(n<0,0,s=n+1; while(issquare(s*n)==0,s++); s)
    
  • PARI
    a(n)=my(c=core(n)); (sqrtint(n/c)+1)^2*c \\ Charles R Greathouse IV, Jun 23 2015
    
  • Ruby
    def a(n)
      k = Math.sqrt(n).to_i
      k -= 1 until n % k**2 == 0
      n + 2*n/k + n/(k**2)
    end # Peter Kagey, Jul 27 2015

Formula

a(n) = n + A067722(n). - Peter Kagey, Feb 05 2015
a(n) = A007913(n)*(A000188(n)+1)^2. - Peter Kagey, Feb 06 2015
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = 1 + 2*zeta(3)/zeta(2) + Pi^2/15 = 3.11949956554216757204... . - Amiram Eldar, Feb 17 2024

A305677 Number of subsets of {n+1, n+2, ..., A072905(n)-1} whose product has the same squarefree part as n.

Original entry on oeis.org

1, 2, 8, 1, 64, 256, 2048, 4, 1, 131072, 262144, 32, 8388608, 33554432, 134217728, 1, 2147483648, 8, 34359738368, 1024, 549755813888, 4398046511104, 17592186044416, 8192, 2, 1125899906842624, 32, 65536, 72057594037927936, 576460752303423488
Offset: 1

Author

Peter Kagey, Jun 08 2018

Keywords

Comments

Conjecture: a(n) > 0.
If the conjecture is true, all terms are powers of two, and a(n) >= A259527(n).
a(n) = 0 if and only if A066400(n) = 2.
a(n) = 0 if and only if A255167(n) = 0.
a(n) <= 2^(A067722(n) - 1). - Peter Kagey, Nov 13 2018

Examples

			For n = 3, the a(3) = 8 subsets of {4, 5, ..., 11} with a product with squarefree part of 3 are {4, 5, 6, 9, 10}, {4, 5, 6, 10}, {4, 6, 8}, {4, 6, 8, 9}, {5, 6, 9, 10}, {5, 6, 10}, {6, 8}, and {6, 8, 9}.
		

Crossrefs

A321482 a(n) = log_2(A305677(n)).

Original entry on oeis.org

0, 1, 3, 0, 6, 8, 11, 2, 0, 17, 18, 5, 23, 25, 27, 0, 31, 3, 35, 10, 39, 42, 44, 13, 1, 50, 5, 16, 56, 59, 62, 4, 66, 69, 70, 0, 76, 77, 80, 25, 84, 86, 89, 29, 14, 95, 98, 8, 1, 5, 106, 34, 111, 18, 117, 39, 121, 123, 125, 42, 129, 132, 21, 2, 139, 141, 144
Offset: 1

Author

Peter Kagey, Nov 12 2018

Keywords

Comments

a(n) <= A067722(n) - 1.
It is conjectured that A305677(n) > 0. If A305677(n) = 0, then define a(n) = -1.

Crossrefs

Showing 1-3 of 3 results.