A067735 Number of partitions of 2^n into distinct parts.
1, 1, 2, 6, 32, 390, 16444, 4013544, 11784471548, 1168225267521350, 16816734263788624008200, 276565526698898057002583240473088, 96052644365764024805972019009272150642974291708, 43586702014259316987395017345466711329303914541873541942193666197800
Offset: 0
Keywords
Examples
a(3)=6 since 2^3=8 can be partitioned into 8, 7+1, 6+2, 5+3, 5+2+1, or 4+3+1.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..14
- Henry Bottomley, Partition calculators using java applets
- Index entries for sequences related to partitions
Programs
-
Mathematica
Table[ PartitionsQ[2^n], {n, 0, 13}]
Formula
a(n) ~ exp(Pi*sqrt(2^n/3))/(3^(1/4)*2^(3*n/4+2)). - Ilya Gutkovskiy, Jan 13 2017
Comments