A067766 Numbers k such that sigma(k)^2 > 4*sigma_2(k) where sigma_2(k) is the sum of squares over the divisors of k.
24, 36, 48, 60, 72, 84, 90, 96, 108, 120, 126, 132, 140, 144, 150, 156, 160, 168, 180, 192, 204, 210, 216, 228, 240, 252, 264, 270, 276, 280, 288, 300, 312, 320, 324, 330, 336, 360, 378, 384, 390, 396, 400, 408, 420, 432, 440, 450, 456, 462, 468, 480, 504
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harvey P. Dale)
Programs
-
Mathematica
Select[Range[600],DivisorSigma[1,#]^2>4*DivisorSigma[2,#]&] (* Harvey P. Dale, Dec 27 2015 *)
-
PARI
for(n=1,1000,if(sigma(n)^2>4*sumdiv(n,k,k^2),print1(n,",")))
-
PARI
isok(k) = {my(f = factor(k)); sigma(f)^2 > 4 * sigma(f, 2);} \\ Amiram Eldar, Apr 19 2025
Comments