A067808 Numbers k such that sigma(k)^2 > 3*sigma(k^2).
720, 1080, 1440, 1680, 1800, 2016, 2160, 2520, 2880, 3024, 3240, 3360, 3600, 3780, 3960, 4032, 4200, 4320, 4680, 5040, 5280, 5400, 5544, 5760, 6048, 6120, 6300, 6480, 6720, 6840, 7056, 7200, 7560, 7920, 8064, 8400, 8640, 9000, 9072, 9240, 9360, 9504
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(n) local F; F:= ifactors(n)[2]; mul((t[1]^(t[2]+1)-1)^2/(t[1]^(2*t[2]+1)-1)/(t[1]-1), t = F) > 3 end proc: select(filter, [$1..10^4]); # Robert Israel, Jun 20 2018
-
Mathematica
filterQ[n_] := Module[{F = FactorInteger[n]}, If[n == 1, Return[False]]; Product[{p, e} = pe; (p^(e+1)-1)^2/((p^(2e+1)-1)(p-1)), {pe, F}] > 3]; Select[Range[10^4], filterQ] (* Jean-François Alcover, Apr 29 2019, after Robert Israel *)
-
PARI
isok(k) = sigma(k)^2 > 3*sigma(k^2); \\ Michel Marcus, Apr 29 2019
-
PARI
isok(k) = {my(f = factor(k), p, e); prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; (p^(e+1)-1)^2/((p^(2*e+1)-1)*(p-1))) > 3;} \\ Amiram Eldar, Apr 27 2025
Comments