cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067808 Numbers k such that sigma(k)^2 > 3*sigma(k^2).

Original entry on oeis.org

720, 1080, 1440, 1680, 1800, 2016, 2160, 2520, 2880, 3024, 3240, 3360, 3600, 3780, 3960, 4032, 4200, 4320, 4680, 5040, 5280, 5400, 5544, 5760, 6048, 6120, 6300, 6480, 6720, 6840, 7056, 7200, 7560, 7920, 8064, 8400, 8640, 9000, 9072, 9240, 9360, 9504
Offset: 1

Views

Author

Benoit Cloitre, Feb 07 2002

Keywords

Comments

For every m>1 sigma(m)^2 > sigma(m^2).
From Robert Israel, Jun 20 2018: (Start)
Numbers with prime factorization Product_j p_j^(e_j) such that Product_j (p_j^(e_j+1)-1)^2/((p_j^(2*e_j+1)-1)*(p_j-1)) > 3.
If h is a term then so are all multiples of h.
The first term that is squarefree is 7420738134810 = A002110(12). (End)
From Amiram Eldar, Apr 27 2025: (Start)
All the terms are 3-abundant numbers (A068403).
The numbers of terms that do not exceed 10^k, for k = 3, 4, ..., are 1, 44, 501, 5246, 51870, 518782, 5191909, 51889993, 518783441, ... . Apparently, the asymptotic density of this sequence exists and equals 0.00518... . (End)

Crossrefs

Subsequence of A068403.

Programs

  • Maple
    filter:= proc(n) local F;
      F:= ifactors(n)[2];
      mul((t[1]^(t[2]+1)-1)^2/(t[1]^(2*t[2]+1)-1)/(t[1]-1), t = F) > 3
    end proc:
    select(filter, [$1..10^4]); # Robert Israel, Jun 20 2018
  • Mathematica
    filterQ[n_] := Module[{F = FactorInteger[n]}, If[n == 1, Return[False]]; Product[{p, e} = pe; (p^(e+1)-1)^2/((p^(2e+1)-1)(p-1)), {pe, F}] > 3];
    Select[Range[10^4], filterQ] (* Jean-François Alcover, Apr 29 2019, after Robert Israel *)
  • PARI
    isok(k) = sigma(k)^2 > 3*sigma(k^2); \\ Michel Marcus, Apr 29 2019
    
  • PARI
    isok(k) = {my(f = factor(k), p, e); prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; (p^(e+1)-1)^2/((p^(2*e+1)-1)*(p-1))) > 3;} \\ Amiram Eldar, Apr 27 2025