cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067895 Write 2^n, 2^n+1, 2^n+2, ..., 2^(n+1)-1 in binary and add as if they were decimal numbers.

Original entry on oeis.org

1, 21, 422, 8444, 168888, 3377776, 67555552, 1351111104, 27022222208, 540444444416, 10808888888832, 216177777777664, 4323555555555328, 86471111111110656, 1729422222222221312, 34588444444444442624, 691768888888888885248, 13835377777777777770496, 276707555555555555540992
Offset: 0

Views

Author

N. J. A. Sloane, May 15 2003

Keywords

Examples

			2^2 to 2^3-1 = 4 through 7 = 100, 101, 110 and 111 in binary and when summed = 422.
		

Crossrefs

Cf. A067894.

Programs

  • Mathematica
    Table[Total[FromDigits[IntegerDigits[#,2]]&/@(Range[2^n,2^(n+1)-1])],{n,0,20}] (* Harvey P. Dale, May 20 2012 *)
  • PARI
    a(n)=if(n<0,0,2^(n-1)*(19*10^n-1)/9)

Formula

G.f.: (1 - x)/(1 - 22x + 40*x^2).
a(n) = 2^(n-1)*(19*10^n - 1)/9.
a(n) = 22*a(n-1) - 40*a(n-2).
E.g.f.: exp(2*x)*(19*exp(18*x) - 1)/18. - Stefano Spezia, Apr 03 2023