cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068017 Composite n such that sigma(n) - 1 and sigma(n) + 1 are twin primes.

Original entry on oeis.org

6, 10, 20, 24, 26, 30, 38, 46, 51, 55, 85, 88, 105, 114, 118, 126, 135, 136, 141, 145, 147, 155, 158, 161, 177, 178, 185, 203, 206, 207, 209, 216, 230, 236, 238, 255, 278, 296, 321, 344, 346, 355, 371, 377, 384, 391, 396, 398, 416, 424, 447, 462, 486, 500
Offset: 1

Views

Author

Labos Elemer, Feb 08 2002

Keywords

Examples

			For n=46, sigma(46)=1+2+23+46=72, for n=51, sigma(51)=1+3+17+51=72 and also for n=55, sigma(55)=1+5+11+55=72 is the middle term of {71,73} twins.
		

Crossrefs

Programs

  • Mathematica
    Do[s=-1+DivisorSigma[1, n]; s1=1+DivisorSigma[1, n]; If[PrimeQ[s]&&PrimeQ[s1]&&!PrimeQ[n], Print[n]], {n, 1, 2000}]
    cntpQ[n_]:=Module[{ds=DivisorSigma[1,n]},CompositeQ[n]&&AllTrue[ds+{1,-1}, PrimeQ]]; Select[Range[500],cntpQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 05 2015 *)
  • PARI
    isok(n) = my(s=sigma(n)); !isprime(n) && isprime(s-1) && isprime(s+1); \\ Michel Marcus, Apr 24 2019