A068017 Composite n such that sigma(n) - 1 and sigma(n) + 1 are twin primes.
6, 10, 20, 24, 26, 30, 38, 46, 51, 55, 85, 88, 105, 114, 118, 126, 135, 136, 141, 145, 147, 155, 158, 161, 177, 178, 185, 203, 206, 207, 209, 216, 230, 236, 238, 255, 278, 296, 321, 344, 346, 355, 371, 377, 384, 391, 396, 398, 416, 424, 447, 462, 486, 500
Offset: 1
Keywords
Examples
For n=46, sigma(46)=1+2+23+46=72, for n=51, sigma(51)=1+3+17+51=72 and also for n=55, sigma(55)=1+5+11+55=72 is the middle term of {71,73} twins.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Do[s=-1+DivisorSigma[1, n]; s1=1+DivisorSigma[1, n]; If[PrimeQ[s]&&PrimeQ[s1]&&!PrimeQ[n], Print[n]], {n, 1, 2000}] cntpQ[n_]:=Module[{ds=DivisorSigma[1,n]},CompositeQ[n]&&AllTrue[ds+{1,-1}, PrimeQ]]; Select[Range[500],cntpQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 05 2015 *)
-
PARI
isok(n) = my(s=sigma(n)); !isprime(n) && isprime(s-1) && isprime(s+1); \\ Michel Marcus, Apr 24 2019