A068052 Start from 1, shift one left and sum mod 2 (bitwise-XOR) to get 3 (11 in binary), then shift two steps left and XOR to get 15 (1111 in binary), then three steps and XOR to get 119 (1110111 in binary), then four steps and so on.
1, 3, 15, 119, 1799, 59367, 3743271, 481693095, 123123509927, 62989418816679, 64491023022979239, 132015402419352060071, 540829047855347718631591, 4430403202865824763042320551, 72583450474242118015031400337575, 2378466805556971511916001231449723047
Offset: 0
Links
- Antti Karttunen, Table of n, a(n) for n = 0..64
Crossrefs
Programs
-
Maple
with(gfun,seriestolist); [seq(foo(map(`mod`,seriestolist(series(mul(1+(z^i),i=1..n),z,binomial(n+1,2)+1)),2)), n=0..20)]; foo := proc(a) local i; add(a[i]*2^(i-1),i=1..nops(a)); end; # second Maple program: a:= proc(n) option remember; `if`(n=0, 1, (t-> Bits[Xor](2^n*t, t))(a(n-1))) end: seq(a(n), n=0..16); # Alois P. Heinz, Mar 07 2024
-
Mathematica
FoldList[BitXor[#, #*#2]&, 1, 2^Range[20]] (* Paolo Xausa, Mar 07 2024 *)
-
PARI
a(n) = if(n<1, 1, bitxor(a(n - 1), 2^n*a(n - 1))); \\ Indranil Ghosh, Apr 15 2017, after formula by Antti Karttunen
Formula
Extensions
Formulas added by Antti Karttunen, Apr 15 2017
Comments