A068081 Numbers n such that n + phi(n) and n - phi(n) are prime.
15, 33, 35, 51, 65, 77, 91, 95, 143, 161, 177, 209, 213, 215, 217, 247, 255, 303, 335, 341, 371, 411, 427, 435, 447, 455, 533, 545, 561, 573, 591, 611, 665, 707, 713, 717, 779, 803, 871, 917, 933, 965, 1001, 1041, 1067, 1105, 1115, 1133, 1157, 1159, 1211
Offset: 1
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
GAP
A068081:=[];; for n in [1,3..10^4+1] do if IsPrime(n+Phi(n)) and IsPrime(n-Phi(n)) then Add(A068081,n); fi; od; A068081; # Muniru A Asiru, Aug 31 2017
-
Maple
with(numtheory): for n from 1 by 2 to 10^4 do if [isprime(n+phi(n)), isprime(n-phi(n))]=[true,true] then print(n); fi; od; # Muniru A Asiru, Aug 31 2017
-
Mathematica
Select[ Range[1500], PrimeQ[ # + EulerPhi[ # ]] && PrimeQ[ # - EulerPhi[ # ]] & ] epQ[n_]:=Module[{ep=EulerPhi[n]},AllTrue[n+{ep,-ep},PrimeQ]]; Select[ Range[ 1500],epQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 22 2016 *)
-
PARI
is(n)=my(t=eulerphi(n)); isprime(n-t) && isprime(n+t) \\ Charles R Greathouse IV, Jan 25 2017
Extensions
Edited and extended by Robert G. Wilson v, Feb 18 2002