cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068111 Numerators of coefficients in J0(i*sqrt(x))^2, where J0 denotes the ordinary Bessel function of order 0.

Original entry on oeis.org

1, 1, 3, 5, 35, 7, 77, 143, 143, 2431, 46189, 4199, 96577, 7429, 7429, 215441, 6678671, 392863, 392863, 765049, 765049, 31367009, 1348781387, 58642669, 2756205443, 2756205443, 2756205443, 146078888479, 146078888479, 5037203051, 297194980009, 584803025179, 584803025179
Offset: 0

Views

Author

Benoit Cloitre, Mar 21 2002

Keywords

Comments

The product of the odd primes between n+1 and 2n. inclusive. - T. D. Noe, Jan 24 2007

Examples

			Fractions begin with 1, 1/2, 3/32, 5/576, 35/73728, 7/409600, 77/176947200, 143/17340825600, 143/1183800360960, 2431/1725980926279680, 46189/3451961852559360000, 4199/39779750872350720000, ...
		

Crossrefs

Cf. A068110 (denominators).

Programs

  • Mathematica
    Numerator[CoefficientList[Series[BesselJ[0, I*Sqrt[x]]^2, {x, 0, 30}], x]] (* Amiram Eldar, Jan 17 2025 *)

Formula

J0(i*sqrt(y))^2 = Sum_{n>=0} (2n)!/(n!)^4/2^(2n)*y^n.