A068111 Numerators of coefficients in J0(i*sqrt(x))^2, where J0 denotes the ordinary Bessel function of order 0.
1, 1, 3, 5, 35, 7, 77, 143, 143, 2431, 46189, 4199, 96577, 7429, 7429, 215441, 6678671, 392863, 392863, 765049, 765049, 31367009, 1348781387, 58642669, 2756205443, 2756205443, 2756205443, 146078888479, 146078888479, 5037203051, 297194980009, 584803025179, 584803025179
Offset: 0
Examples
Fractions begin with 1, 1/2, 3/32, 5/576, 35/73728, 7/409600, 77/176947200, 143/17340825600, 143/1183800360960, 2431/1725980926279680, 46189/3451961852559360000, 4199/39779750872350720000, ...
Links
- T. D. Noe, Table of n, a(n) for n=0..250
Crossrefs
Cf. A068110 (denominators).
Programs
-
Mathematica
Numerator[CoefficientList[Series[BesselJ[0, I*Sqrt[x]]^2, {x, 0, 30}], x]] (* Amiram Eldar, Jan 17 2025 *)
Formula
J0(i*sqrt(y))^2 = Sum_{n>=0} (2n)!/(n!)^4/2^(2n)*y^n.
Comments