cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068119 Number of steps to reach an integer starting with n + 1/4 and iterating the map x -> x*ceiling(x).

Original entry on oeis.org

3, 3, 1, 3, 2, 2, 1, 7, 4, 4, 1, 2, 2, 4, 1, 6, 3, 5, 1, 5, 2, 2, 1, 4, 6, 3, 1, 2, 2, 3, 1, 7, 3, 4, 1, 3, 2, 2, 1, 7, 4, 7, 1, 2, 2, 5, 1, 3, 3, 10, 1, 4, 2, 2, 1, 3, 5, 11, 1, 2, 2, 3, 1, 5, 3, 3, 1, 3, 2, 2, 1, 4, 4, 6, 1, 2, 2, 4, 1, 4, 3, 6, 1, 6, 2, 2, 1, 6, 7, 3, 1, 2, 2, 3, 1, 4, 3, 5, 1, 3, 2, 2, 1, 4
Offset: 1

Views

Author

Benoit Cloitre, Aug 30 2002

Keywords

Comments

If the initial value is n + 1/2 we get A001511.
S(n)=sum(k=1, n, a(k)) seems to be asymptotic to 3*n. S(n)=3n for in A074069.
The sign of 3n-S(n) seems to change often: 3n-S(n) gives A074077. Is 3n-S(n) bounded? - Benoit Cloitre, Sep 05 2002

Crossrefs

Programs

  • Haskell
    import Data.Ratio ((%), denominator)
    a068119 n = fst $ until ((== 1) . denominator . snd)
                            (\(i, x) -> (i + 1, f x)) (0, fromInteger n + 1%4)
       where f x = x * fromIntegral (ceiling x)
    -- Reinhard Zumkeller, May 26 2013
  • Mathematica
    ce[n_] := Length[NestWhileList[#*Ceiling[#] &, n + 1/4, ! IntegerQ[#] &]] - 1; ce /@ Range[104] (* Jayanta Basu, Jul 29 2013 *)
  • PARI
    a(n)=if(n<0,0,s=n+1/4; c=0; while(frac(s)>0,s=s*ceil(s); c++); c)
    

Formula

a(n) = 1 if n == 3 (mod 4); a(n) = 2 if n == 5, 6, 12, 13 (mod 16); a(n) = 3 if n == 1, 2, 4, 17, 26, 30, 33, 36, 48, 49, 56, 62 (mod 64);...

Extensions

Corrected by Diego Torres (torresvillarroel(AT)hotmail.com), Aug 31 2002