A068237 Numerators of arithmetic derivative of 1/n: -A003415(n)/n^2.
0, -1, -1, -1, -1, -5, -1, -3, -2, -7, -1, -1, -1, -9, -8, -1, -1, -7, -1, -3, -10, -13, -1, -11, -2, -15, -1, -2, -1, -31, -1, -5, -14, -19, -12, -5, -1, -21, -16, -17, -1, -41, -1, -3, -13, -25, -1, -7, -2, -9, -20, -7, -1, -1, -16, -23, -22, -31, -1, -23
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Programs
-
Maple
d:= n-> n*add(i[2]/i[1], i=ifactors(n)[2]): a:= n-> numer(-d(n)/n^2): seq(a(n), n=1..80); # Alois P. Heinz, Jun 07 2015
-
Mathematica
d[n_] := If[n < 2, 0, n Sum[f[[2]]/f[[1]], {f, FactorInteger[n]}]]; a[n_] := Numerator[-d[n]/n^2]; Array[a, 80] (* Jean-François Alcover, Mar 12 2019 *)
-
Python
from fractions import Fraction from sympy import factorint def A068237(n): return -Fraction(sum((Fraction(e,p) for p,e in factorint(n).items())),n).numerator # Chai Wah Wu, Nov 03 2022