cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068316 Run lengths of the Moebius function applied to A051270 (numbers with 5 distinct prime factors).

Original entry on oeis.org

5, 1, 1, 1, 6, 2, 4, 3, 4, 1, 2, 1, 6, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 2, 1, 3, 2, 2, 1, 2, 1, 3, 1, 2, 1, 3, 2, 2, 1, 1, 1, 1, 1, 4, 1, 2, 2, 3, 1, 2, 5, 2, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 2, 2, 4, 1, 2, 2, 2, 1, 4, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Jani Melik, Feb 26 2002

Keywords

Examples

			If we consider A051270 and apply the Moebius function mu(n) to it we get a sequence of values: (-1,-1,-1,-1,-1),0,(-1),0,(-1,-1,-1,-1,-1,-1),0,0,(-1,-1,-1,-1),0,0,0,(-1,-1,-1,-1),0,(-1,-1),0,(-1, ... If we then look at the lengths of runs of equal terms, we get the sequence.
If we consider the values of A051270 which are not in A046387 we get numbers which are not squarefree, so mu(A051270(.)) is zero: 4620, 5460, 6930, ...
		

Crossrefs

Programs

  • Maple
    runl := 1 :
    for n from 2 to 1000 do
        if numtheory[mobius](A051270(n)) = numtheory[mobius](A051270(n-1)) then
            runl := runl+1 ;
        else
            printf("%d,",runl) ;
            runl := 1;
        end if;
    end do: # R. J. Mathar, Oct 13 2019

Extensions

Corrected and extended by R. J. Mathar, Oct 13 2019