A068319 a(n) = if n <= lpf(n)^2 then lpf(n) else a(lpf(n) + n/lpf(n)), where lpf = least prime factor, A020639.
1, 2, 3, 2, 5, 5, 7, 5, 3, 7, 11, 5, 13, 3, 5, 7, 17, 11, 19, 5, 7, 13, 23, 3, 5, 5, 5, 7, 29, 17, 31, 11, 3, 19, 5, 5, 37, 7, 7, 13, 41, 23, 43, 3, 11, 5, 47, 5, 7, 5, 5, 7, 53, 29, 7, 17, 13, 31, 59, 11, 61, 3, 3, 19, 11, 5, 67, 5, 5, 37, 71, 7, 73, 7
Offset: 1
Examples
a(12)=a(2*6)=a(8)=a(2*4)=a(6)=a(2*3)=a(5)=a(5*1)=5.
Links
- R. Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A032742.
Programs
-
Haskell
a068319 n = if n <= spf ^ 2 then spf else a068319 $ spf + div n spf where spf = a020639 n -- Reinhard Zumkeller, Jun 24 2013
-
Mathematica
lpf[n_] := FactorInteger[n][[1, 1]]; a[n_] := a[n] = If[n <= lpf[n]^2, lpf[n], a[lpf[n] + n/lpf[n]]]; Table[a[n], {n, 1, 74}](* Jean-François Alcover, Dec 21 2011 *)
Comments