cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068328 Arithmetic derivatives of the squarefree numbers.

Original entry on oeis.org

0, 1, 1, 1, 5, 1, 7, 1, 1, 9, 8, 1, 1, 10, 13, 1, 15, 1, 31, 1, 14, 19, 12, 1, 21, 16, 1, 41, 1, 25, 1, 20, 1, 16, 22, 31, 1, 1, 33, 18, 61, 1, 26, 59, 1, 1, 39, 18, 71, 1, 43, 1, 22, 45, 32, 1, 20, 34, 49, 24, 1, 1, 91, 1, 71, 55, 1, 1, 87, 40, 1, 101, 28, 61, 24, 63, 44, 1, 46
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 27 2002

Keywords

Comments

a(n) and A005117(n) are coprime, cf. A085731. - Reinhard Zumkeller, May 10 2011

Examples

			a(65) = d(A005117(65)) = d(105) = d(3*35) = 3*d(35)+d(3)*35 = 3*d(5*7)+1*35 = 3*d(5*7)+1*35 = 3*(5*d(7)+d(5)*7)+35 = 3*(5*1+1*7)+35 = 3*12+35 = 71, where d(n) = A003415(n).
With d(1)=0, d(prime) = 1 and d(m*n) = d(m)*n + m*d(n).
		

Crossrefs

Programs

  • Haskell
    a068328 = a003415 . a005117 -- Reinhard Zumkeller, May 10 2011
  • Mathematica
    ad[n_] := ad[n] = n*Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); ad[1] = 0; Table[ad[k], {k, Select[Range[150], SquareFreeQ]}] (* Amiram Eldar, Mar 04 2024 *)

Formula

a(n) = A003415(A005117(n)).
a(n) = A069359(A005117(n)).
a(n) = Sum_{prime p | A005117(n)} A005117(n)/p.