A068361 Numbers n such that the number of squarefree numbers between prime(n) and prime(n+1) = prime(n+1)-prime(n)-1.
1, 3, 10, 13, 26, 33, 60, 89, 104, 113, 116, 142, 148, 201, 209, 212, 234, 265, 268, 288, 313, 320, 332, 343, 353, 384, 398, 408, 477, 484, 498, 542, 545, 551, 577, 581, 601, 625, 636, 671, 719, 723, 726, 745, 794, 805, 815, 862, 864, 884, 944, 964, 995, 1054
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
A subset of A029707 (lesser index of twin primes).
Prime index of each (prime) term of A061351.
Positions of zeros in A061399.
Positions of zeros in A377784.
A006562 finds balanced primes.
A038664 locates the first prime gap of size 2n.
A046933 counts composite numbers between primes.
A120327 gives the least nonsquarefree number >= n.
Programs
-
Mathematica
Select[Range[100],And@@SquareFreeQ/@Range[Prime[#],Prime[#+1]]&] (* Gus Wiseman, Dec 11 2024 *)
-
PARI
isok(n) = for (k=prime(n)+1, prime(n+1)-1, if (!issquarefree(k), return (0))); 1; \\ Michel Marcus, Apr 29 2016
Formula
n such that A061398(n) = prime(n+1)-prime(n)-1.
prime(a(n)) = A061351(n). - Gus Wiseman, Dec 11 2024
Comments