A068380 Engel expansion of sinh(1/3).
3, 54, 180, 378, 648, 990, 1404, 1890, 2448, 3078, 3780, 4554, 5400, 6318, 7308, 8370, 9504, 10710, 11988, 13338, 14760, 16254, 17820, 19458, 21168, 22950, 24804, 26730, 28728, 30798, 32940, 35154, 37440, 39798, 42228, 44730, 47304, 49950, 52668, 55458, 58320, 61254
Offset: 1
Examples
sinh(1/3) = 1/3 + 1/(3*54) + 1/(3*54*180) + 1/(3*54*180*378) + 1/(3*54*180*378*648) + ... = 0.33954055725615013910126061...
Links
- Eric Weisstein's World of Mathematics, Engel Expansion.
- Wikipedia, Engel Expansion.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
LinearRecurrence[{3, -3, 1}, {3, 54, 180, 378}, 50]
-
PARI
a(n)=if(n<=1, 3, 18*(n*(2*n-3)+1));
-
PARI
my(x='x+O('x^43)); Vec(3*x*(1+15*x+9*x^2-x^3)/(1-x)^3) \\ Elmo R. Oliveira, May 29 2025
Formula
a(n) = 18*(n*(2*n-3)+1) for n > 1, a(1)=3. - Ralf Stephan, Sep 03 2003
From Colin Barker, Apr 13 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 4.
G.f.: 3*x*(x^3-9*x^2-15*x-1)/(x-1)^3. (End)
From Amiram Eldar, May 05 2025: (Start)
Sum_{n>=1} 1/a(n) = (4-log(2))/9.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4/9 - Pi/36 - log(2)/18. (End)
From Elmo R. Oliveira, May 29 2025: (Start)
E.g.f.: 3*(6*exp(x)*(1 - x + 2*x^2) + (x - 6)).
a(n) = 9*A002943(n-1) for n >= 2. (End)
Extensions
Edited, offset 1 and a(1)=3 by Georg Fischer, Nov 23 2020
More terms from Elmo R. Oliveira, May 29 2025
Comments