cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A068377 Engel expansion of sinh(1).

Original entry on oeis.org

1, 6, 20, 42, 72, 110, 156, 210, 272, 342, 420, 506, 600, 702, 812, 930, 1056, 1190, 1332, 1482, 1640, 1806, 1980, 2162, 2352, 2550, 2756, 2970, 3192, 3422, 3660, 3906, 4160, 4422, 4692, 4970, 5256, 5550, 5852, 6162, 6480, 6806, 7140, 7482, 7832, 8190
Offset: 1

Views

Author

Benoit Cloitre, Mar 03 2002

Keywords

Comments

This sequence is also the Pierce expansion of sin(1). - G. C. Greubel, Nov 14 2016

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[(2 n - 2) (2 n - 1), {n, 2, 50}]] (* Bruno Berselli, Aug 04 2015 *)
    LinearRecurrence[{3,-3,1}, {1,6,20,42}, 25] (* G. C. Greubel, Oct 27 2016; a(1)=1 by Georg Fischer, Apr 02 2019*)
    Rest@ CoefficientList[Series[x (1 + 3 x + 5 x^2 - x^3)/(1 - x)^3, {x, 0, 46}], x] (* Michael De Vlieger, Oct 28 2016 *)
    PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[Sin[1] , 7!], 50] (* G. C. Greubel, Nov 14 2016 *)
  • PARI
    A068377(n)=(n+n--)*n*2+!n \\ M. F. Hasler, Jul 19 2015
    
  • Sage
    A068377 = lambda n: rising_factorial(n*2,2) if n>0 else 1
    print([A068377(n) for n in (0..45)]) # Peter Luschny, Aug 04 2015

Formula

a(n) = (2*n-2)*(2*n-1) = A002943(n-1) = 2*A000217(2n-2) for n>1. [Corrected and extended by M. F. Hasler, Jul 19 2015]
From Colin Barker, Apr 13 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>4.
G.f.: x*(1 + 3*x + 5*x^2 - x^3)/(1-x)^3. (End)
E.g.f.: -2 + x + 2*(1 - x + 2*x^2)*exp(x). - G. C. Greubel, Oct 27 2016
From Amiram Eldar, May 05 2025: (Start)
Sum_{n>=1} 1/a(n) = 2 - log(2).
Sum_{n>=1} (-1)^(n+1)/a(n) = 2 - Pi/4 - log(2)/2. (End)

A068379 Engel expansion of sinh(1/2).

Original entry on oeis.org

2, 24, 80, 168, 288, 440, 624, 840, 1088, 1368, 1680, 2024, 2400, 2808, 3248, 3720, 4224, 4760, 5328, 5928, 6560, 7224, 7920, 8648, 9408, 10200, 11024, 11880, 12768, 13688, 14640, 15624, 16640, 17688, 18768, 19880, 21024, 22200, 23408, 24648, 25920, 27224, 28560
Offset: 1

Views

Author

Benoit Cloitre, Mar 03 2002

Keywords

Comments

Cf. A006784 for Engel expansion definition.
The MathWorld link mentions the closed form of the Engel expansion of sinh(1) = A068377. - Georg Fischer, Nov 22 2020

Examples

			sinh(1/2) = 1/2 + 1/(2*24) + 1/(2*24*80) + 1/(2*24*80*168) + 1/(2*24*80*168*288) + ... = 0.52109530549374736162242562641... = A334367.
		

Crossrefs

Programs

Formula

a(n) = 8*(n*(2*n-3)+1) for n > 1, a(1)=2.
From Colin Barker, Apr 13 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 4.
G.f.: 2*x*(1+9*x+7*x^2-x^3)/(1-x)^3. (End)
From Amiram Eldar, May 05 2025: (Start)
Sum_{n>=1} 1/a(n) = (3-log(2))/4.
Sum_{n>=1} (-1)^(n+1)/a(n) = 3/4 - Pi/16 - log(2)/8. (End)
From Elmo R. Oliveira, May 29 2025: (Start)
E.g.f.: 2*(4*exp(x)*(1 - x + 2*x^2) + (x - 4)).
a(n) = 2*A033586(n-1) for n >= 2.
a(n) = 4*A002943(n-1) for n >= 2. (End)

Extensions

Edited, offset 1 and a(1)=2 in programs and b-file by Georg Fischer, Nov 22 2020

A361521 Array read by descending antidiagonals. A(n, k) is the number of the nonempty multiset combinations of {0, 1} as defined in A361682.

Original entry on oeis.org

0, 0, 0, 0, 2, 0, 0, 5, 4, 0, 0, 9, 12, 6, 0, 0, 14, 24, 21, 8, 0, 0, 20, 40, 45, 32, 10, 0, 0, 27, 60, 78, 72, 45, 12, 0, 0, 35, 84, 120, 128, 105, 60, 14, 0, 0, 44, 112, 171, 200, 190, 144, 77, 16, 0, 0, 54, 144, 231, 288, 300, 264, 189, 96, 18, 0
Offset: 0

Views

Author

Peter Luschny, Mar 22 2023

Keywords

Comments

A detailed combinatorial interpretation can be found in A361682.

Examples

			[0] 0,  0,  0,   0,   0,   0,   0,    0, ...  A000004
[1] 0,  2,  5,   9,  14,  20,  27,   35, ...  A000096
[2] 0,  4, 12,  24,  40,  60,  84,  112, ...  A046092
[3] 0,  6, 21,  45,  78, 120, 171,  231, ...  A081266
[4] 0,  8, 32,  72, 128, 200, 288,  392, ...  A139098
[5] 0, 10, 45, 105, 190, 300, 435,  595, ...
[6] 0, 12, 60, 144, 264, 420, 612,  840, ...  A153792
[7] 0, 14, 77, 189, 350, 560, 819, 1127, ...
       | A028347 |     A163761
     A005843  A067725
.
[0] 0;
[1] 0,  0;
[2] 0,  2,   0;
[3] 0,  5,   4,   0;
[4] 0,  9,  12,   6,   0;
[5] 0, 14,  24,  21,   8,   0;
[6] 0, 20,  40,  45,  32,  10,   0;
[7] 0, 27,  60,  78,  72,  45,  12,  0;
[8] 0, 35,  84, 120, 128, 105,  60, 14,  0;
[9] 0, 44, 112, 171, 200, 190, 144, 77, 16, 0;
		

Crossrefs

Programs

  • Maple
    A := (n, k) -> n*k*(4 + n*(k - 1))/2:
    for n from 0 to 7 do seq(A(n, k), k = 0..7) od;

Formula

A(n, k) = n*k*(4 + n*(k - 1))/2.
T(n, k) = k*(n - k)*(4 + k*(n - k - 1))/2.
A(n, k) = A361682(n, k) - 1.
Showing 1-3 of 3 results.