A068383 Numbers k such that k divides 11^k - 1.
1, 2, 4, 5, 6, 8, 10, 12, 16, 18, 20, 24, 25, 30, 32, 36, 40, 42, 48, 50, 54, 60, 64, 72, 80, 84, 90, 96, 100, 108, 114, 120, 125, 126, 128, 144, 150, 156, 160, 162, 168, 180, 192, 200, 210, 216, 222, 228, 240, 244, 250, 252, 256, 270, 272, 288, 294, 300, 312, 320
Offset: 1
Examples
11^5 - 1 = 161050, which is divisible by 5, so 5 is in the sequence. 11^6 - 1 = 1771560, which is divisible by 6, so 6 is in the sequence. 11^7 = 19487171 = 4 modulo 7, so 7 is not in the sequence.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Join[{1}, Select[Range[500], PowerMod[11, #, #] == 1 &]] (* Robert Price, Apr 04 2020 *)
-
PARI
isok(n) = Mod(11, n)^n == Mod(1, n); \\ Michel Marcus, May 06 2016
-
Scala
def powerMod(a: Int, b: Int, m: Int): Int = b match { case 1 => a % m; case n => a * powerMod(a, n - 1, m) % m } List(1) ++: (2 to 500).filter(k => powerMod(11, k, k) == 1) // Alonso del Arte, Apr 04 2020
Comments