cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068408 Automorphic numbers: numbers k such that k^6 ends with k. Also m-morphic numbers for all m not congruent to 26 (mod 50) but congruent to 6 (mod 10).

Original entry on oeis.org

0, 1, 5, 6, 16, 21, 25, 36, 41, 56, 61, 76, 81, 96, 176, 201, 376, 401, 576, 601, 625, 776, 801, 976, 1376, 2001, 3376, 4001, 5376, 6001, 7376, 8001, 9376, 20001, 29376, 40001, 49376, 60001, 69376, 80001, 89376, 90625, 109376, 200001, 309376, 400001, 509376
Offset: 1

Views

Author

Benoit Cloitre, Mar 08 2002

Keywords

Comments

90625^6 = 553972386755049228668212890625 hence 90625 is in the sequence.

Crossrefs

Cf. A033819.

Programs

  • Mathematica
    okQ[n_]:=Module[{idn=IntegerDigits[n],id6n=IntegerDigits[n^6]}, idn==Take[id6n,-Length[idn]]]
    Select[Range[120000],okQ]  (* Harvey P. Dale, Jan 16 2011 *)
  • Sage
    def automorphic(maxdigits, pow, base=10) :
        morphs = [[0]]
        for i in range(maxdigits):
            T=[d*base^i+x for x in morphs[-1] for d in range(base)]
            morphs.append([x for x in T if x^pow % base^(i+1) == x])
        res = list(set(sum(morphs,[]))); res.sort()
        return res
    # (call with pow=6 for this sequence), Eric M. Schmidt, Jul 29 2013

Extensions

More terms from Eric M. Schmidt, Jul 29 2013