A068408 Automorphic numbers: numbers k such that k^6 ends with k. Also m-morphic numbers for all m not congruent to 26 (mod 50) but congruent to 6 (mod 10).
0, 1, 5, 6, 16, 21, 25, 36, 41, 56, 61, 76, 81, 96, 176, 201, 376, 401, 576, 601, 625, 776, 801, 976, 1376, 2001, 3376, 4001, 5376, 6001, 7376, 8001, 9376, 20001, 29376, 40001, 49376, 60001, 69376, 80001, 89376, 90625, 109376, 200001, 309376, 400001, 509376
Offset: 1
Links
Crossrefs
Cf. A033819.
Programs
-
Mathematica
okQ[n_]:=Module[{idn=IntegerDigits[n],id6n=IntegerDigits[n^6]}, idn==Take[id6n,-Length[idn]]] Select[Range[120000],okQ] (* Harvey P. Dale, Jan 16 2011 *)
-
Sage
def automorphic(maxdigits, pow, base=10) : morphs = [[0]] for i in range(maxdigits): T=[d*base^i+x for x in morphs[-1] for d in range(base)] morphs.append([x for x in T if x^pow % base^(i+1) == x]) res = list(set(sum(morphs,[]))); res.sort() return res # (call with pow=6 for this sequence), Eric M. Schmidt, Jul 29 2013
Extensions
More terms from Eric M. Schmidt, Jul 29 2013
Comments