A068449 Factorial expansion of log(Pi/2) = sum n>0 a(n)/n!.
0, 0, 2, 2, 4, 1, 0, 7, 7, 3, 3, 6, 4, 10, 9, 1, 15, 2, 8, 10, 14, 6, 4, 7, 3, 3, 2, 2, 7, 26, 3, 30, 3, 31, 9, 29, 23, 12, 29, 3, 0, 12, 1, 11, 4, 13, 22, 17, 24, 33, 40, 34, 48, 27, 15, 5, 33, 33, 51, 48, 42, 46, 47, 38, 35, 30, 27, 1, 51, 52, 28, 25, 13, 30, 51, 14, 39, 12, 9, 58, 33
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
R:= RealField(); [Floor(Log(Pi(R)/2))] cat [Floor(Factorial(n)*Log(Pi(R)/2)) - n*Floor(Factorial((n-1))* Log(Pi(R)/2)) : n in [2..30]]; // G. C. Greubel, Mar 21 2018
-
Mathematica
Table[If[n == 1, Floor[Log[Pi/2]], Floor[n!*Log[Pi/2]] - n*Floor[(n - 1)!*Log[Pi/2]]], {n, 1, 50}] (* G. C. Greubel, Mar 21 2018 *)
-
PARI
for(n=1,30, print1(if(n==1, floor(log(Pi/2)), floor(n!*log(Pi/2)) - n*floor((n-1)!*log(Pi/2))), ", ")) \\ G. C. Greubel, Mar 21 2018