cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068450 Factorial expansion of sqrt(Pi) = Sum_{n>0} a(n)/n!.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 1, 1, 3, 0, 5, 10, 6, 8, 12, 0, 10, 0, 12, 9, 6, 12, 22, 21, 24, 3, 14, 21, 13, 24, 21, 11, 8, 22, 27, 3, 8, 1, 36, 21, 27, 15, 2, 41, 22, 34, 8, 0, 4, 8, 39, 48, 27, 38, 22, 0, 23, 49, 19, 27, 29, 28, 40, 33, 21, 62, 7, 67, 33, 8, 30, 18, 60, 73, 61, 72, 42, 59, 22
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Examples

			sqrt(Pi) = 1 + 1/2! + 1/3! + 2/4! + 2/5! + 4/6! + 1/7! + ...
		

Crossrefs

Cf. A075874, A002161 (decimal expansion).

Programs

  • Magma
    SetDefaultRealField(RealField(250));  R:= RealField(); [Floor(Sqrt(Pi(R)))] cat [Floor(Factorial(n)*Sqrt(Pi(R))) - n*Floor(Factorial((n-1))*Sqrt(Pi(R))) : n in [2..30]]; // G. C. Greubel, Mar 21 2018
    
  • Mathematica
    Table[If[n == 1, Floor[Sqrt[Pi]], Floor[n!*Sqrt[Pi]] - n*Floor[(n - 1)!*Sqrt[Pi]]], {n, 1, 50}] (* G. C. Greubel, Mar 21 2018 *)
  • PARI
    default(realprecision, 250); for(n=1,30, print1(if(n==1, floor(sqrt(Pi)), floor(n!*sqrt(Pi)) - n*floor((n-1)!*sqrt(Pi))), ", ")) \\ G. C. Greubel, Mar 21 2018
    
  • PARI
    vector(30,n,if(n>1,t=t%1*n,t=sqrt(Pi))\1) \\ M. F. Hasler, Nov 25 2018
    
  • Sage
    def A068450(n):
        if (n==1): return floor(sqrt(pi))
        else: return expand(floor(factorial(n)*sqrt(pi)) - n*floor(factorial(n-1)*sqrt(pi)))
    [A068450(n) for n in (1..80)] # G. C. Greubel, Nov 27 2018

Extensions

Keyword cons removed by R. J. Mathar, Jul 23 2009