A068451 Factorial expansion of the golden ratio (1+sqrt(5))/2 = Sum_{n>=1} a(n)/n!.
1, 1, 0, 2, 4, 0, 6, 7, 1, 1, 8, 1, 6, 0, 11, 0, 10, 5, 6, 9, 15, 20, 10, 15, 1, 18, 5, 13, 9, 0, 13, 15, 2, 27, 28, 2, 32, 36, 11, 4, 34, 37, 0, 4, 32, 10, 4, 4, 32, 46, 39, 37, 2, 20, 27, 8, 54, 27, 45, 9, 26, 18, 59, 0, 22, 63, 41, 54, 65, 61, 45, 51, 61, 31, 68, 48, 34, 39, 71, 59
Offset: 1
Links
Programs
-
Magma
SetDefaultRealField(RealField(250)); [Floor((1+Sqrt(5))/2)] cat [Floor(Factorial(n)*(1+Sqrt(5))/2) - n*Floor(Factorial((n-1))*(1+Sqrt(5))/2) : n in [2..80]]; // G. C. Greubel, Mar 21 2018
-
Mathematica
With[{b = GoldenRatio}, Table[If[n == 1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]] (* G. C. Greubel, Mar 21 2018 *)
-
PARI
default(realprecision, 250); b = (1+sqrt(5))/2; for(n=1, 80, print1(if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", ")) \\ G. C. Greubel, Mar 21 2018
-
PARI
A068451(N=90,c=precision(sqrt(5)+1,logint(N!,10))/2)=vector(N,n,if(n>1,c=c%1*n,c)\1) \\ M. F. Hasler, Nov 27 2018
-
Sage
def A068451(n): if (n==1): return floor(golden_ratio) else: return expand(floor(factorial(n)*golden_ratio) - n*floor(factorial(n-1)*golden_ratio)) [A068451(n) for n in (1..80)] # G. C. Greubel, Nov 26 2018