cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068451 Factorial expansion of the golden ratio (1+sqrt(5))/2 = Sum_{n>=1} a(n)/n!.

Original entry on oeis.org

1, 1, 0, 2, 4, 0, 6, 7, 1, 1, 8, 1, 6, 0, 11, 0, 10, 5, 6, 9, 15, 20, 10, 15, 1, 18, 5, 13, 9, 0, 13, 15, 2, 27, 28, 2, 32, 36, 11, 4, 34, 37, 0, 4, 32, 10, 4, 4, 32, 46, 39, 37, 2, 20, 27, 8, 54, 27, 45, 9, 26, 18, 59, 0, 22, 63, 41, 54, 65, 61, 45, 51, 61, 31, 68, 48, 34, 39, 71, 59
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Crossrefs

Cf. A001622 (decimal expansion).
Cf. A075874 and A007514.

Programs

  • Magma
    SetDefaultRealField(RealField(250));  [Floor((1+Sqrt(5))/2)] cat [Floor(Factorial(n)*(1+Sqrt(5))/2) - n*Floor(Factorial((n-1))*(1+Sqrt(5))/2) : n in [2..80]]; // G. C. Greubel, Mar 21 2018
    
  • Mathematica
    With[{b = GoldenRatio}, Table[If[n == 1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]] (* G. C. Greubel, Mar 21 2018 *)
  • PARI
    default(realprecision, 250); b = (1+sqrt(5))/2; for(n=1, 80, print1(if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", ")) \\ G. C. Greubel, Mar 21 2018
    
  • PARI
    A068451(N=90,c=precision(sqrt(5)+1,logint(N!,10))/2)=vector(N,n,if(n>1,c=c%1*n,c)\1) \\ M. F. Hasler, Nov 27 2018
    
  • Sage
    def A068451(n):
        if (n==1): return floor(golden_ratio)
        else: return expand(floor(factorial(n)*golden_ratio) - n*floor(factorial(n-1)*golden_ratio))
    [A068451(n) for n in (1..80)] # G. C. Greubel, Nov 26 2018