cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068463 Factorial expansion of Gamma(3/4) = Sum_{n>=1} a(n)/n! where Gamma is Euler's gamma function.

Original entry on oeis.org

1, 0, 1, 1, 2, 0, 2, 0, 7, 2, 1, 5, 1, 12, 12, 12, 12, 5, 7, 9, 4, 20, 10, 9, 6, 17, 20, 18, 7, 6, 11, 9, 24, 3, 22, 8, 24, 33, 35, 33, 31, 12, 0, 27, 6, 31, 37, 37, 27, 31, 6, 24, 7, 17, 12, 1, 39, 41, 51, 48, 21, 8, 15, 26, 46, 52, 43, 39, 7, 21, 60, 24, 58, 21, 57, 58, 36, 60, 25, 7
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Examples

			Gamma(3/4) = 1 + 0/2! + 1/3! + 1/4! + 2/5! + 0/6! + 2/7! + ...
		

Crossrefs

Cf. A075874, A068465 (decimal expansion), A068464 (Gamma(1/4)).

Programs

  • Magma
    SetDefaultRealField(RealField(250)); [Floor(Gamma(3/4))] cat [Floor(Factorial(n)*Gamma(3/4)) - n*Floor(Factorial((n-1))*Gamma(3/4)) : n in [2..80]]; // G. C. Greubel, Nov 27 2018
    
  • Mathematica
    With[{b = Gamma[3/4]}, Table[If[n == 1, Floor[b], Floor[n!*b]-n*Floor[(n - 1)!*b]], {n, 1, 100}]] (* G. C. Greubel, Nov 27 2018 *)
  • PARI
    A068463(N=90,c=gamma(precision(.75,logint(N!,10)+1)))=vector(N,n,if(n>1,c=c%1*n,c)\1) \\ - M. F. Hasler, Nov 26 2018
    
  • PARI
    default(realprecision, 250); b = gamma(3/4); for(n=1, 80, print1(if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", ")) \\ G. C. Greubel, Nov 27 2018
    
  • Sage
    def A068463(n):
        if (n==1): return floor(gamma(3/4))
        else: return expand(floor(factorial(n)*gamma(3/4)) - n*floor(factorial(n-1)*gamma(3/4)))
    [A068463(n) for n in (1..80)] # G. C. Greubel, Nov 27 2018

Extensions

Name edited and keywords cons, easy removed by M. F. Hasler, Nov 26 2018