A068463 Factorial expansion of Gamma(3/4) = Sum_{n>=1} a(n)/n! where Gamma is Euler's gamma function.
1, 0, 1, 1, 2, 0, 2, 0, 7, 2, 1, 5, 1, 12, 12, 12, 12, 5, 7, 9, 4, 20, 10, 9, 6, 17, 20, 18, 7, 6, 11, 9, 24, 3, 22, 8, 24, 33, 35, 33, 31, 12, 0, 27, 6, 31, 37, 37, 27, 31, 6, 24, 7, 17, 12, 1, 39, 41, 51, 48, 21, 8, 15, 26, 46, 52, 43, 39, 7, 21, 60, 24, 58, 21, 57, 58, 36, 60, 25, 7
Offset: 1
Keywords
Examples
Gamma(3/4) = 1 + 0/2! + 1/3! + 1/4! + 2/5! + 0/6! + 2/7! + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Programs
-
Magma
SetDefaultRealField(RealField(250)); [Floor(Gamma(3/4))] cat [Floor(Factorial(n)*Gamma(3/4)) - n*Floor(Factorial((n-1))*Gamma(3/4)) : n in [2..80]]; // G. C. Greubel, Nov 27 2018
-
Mathematica
With[{b = Gamma[3/4]}, Table[If[n == 1, Floor[b], Floor[n!*b]-n*Floor[(n - 1)!*b]], {n, 1, 100}]] (* G. C. Greubel, Nov 27 2018 *)
-
PARI
A068463(N=90,c=gamma(precision(.75,logint(N!,10)+1)))=vector(N,n,if(n>1,c=c%1*n,c)\1) \\ - M. F. Hasler, Nov 26 2018
-
PARI
default(realprecision, 250); b = gamma(3/4); for(n=1, 80, print1(if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", ")) \\ G. C. Greubel, Nov 27 2018
-
Sage
def A068463(n): if (n==1): return floor(gamma(3/4)) else: return expand(floor(factorial(n)*gamma(3/4)) - n*floor(factorial(n-1)*gamma(3/4))) [A068463(n) for n in (1..80)] # G. C. Greubel, Nov 27 2018
Extensions
Name edited and keywords cons, easy removed by M. F. Hasler, Nov 26 2018