A068509 a(n) = maximum length of a subset in {1,..,n} whose integers have pairwise LCM not exceeding n.
1, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12
Offset: 1
Keywords
References
- R. K. Guy, Unsolved Problems in Number Theory, B26.
Links
- William Rex Marshall, Table of n, a(n) for n = 1..1000
- S. L. G. Choi, The largest subset in [1, n] whose integers have pairwise l.c.m. not exceeding n, Mathematika 19:2 (1972), pp. 221-230.
- S. L. G. Choi, The largest subset in [1,n] whose integers have pairwise l.c.m. not exceeding n, II, Acta Arithmetica 29 (1976), pp. 105-111.
- P. Erdos, Extremal problems in number theory, Proc. Sympos. Pure Math., Vol. VIII , pp. 181-191. (see p. 183)
Formula
(3*sqrt(n))/(2*sqrt(2)) - 2 < a(n) <= 1.638*sqrt(n). - P. Erdos and S. L. G. Choi
Extensions
More terms from Rob Pratt, Feb 08 2010
Comments