cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A059794 a(n) = n* - 2^(n-1), where n* (A003418) = least common multiple of the numbers [1,...,n].

Original entry on oeis.org

0, 0, 2, 4, 44, 28, 356, 712, 2264, 2008, 26696, 25672, 356264, 352168, 343976, 687952, 12186704, 12121168, 232530416, 232268272, 231743984, 230695408, 5350034576, 5345840272, 26754367184, 26737589968, 80246324336, 80179215472
Offset: 1

Views

Author

Kathleen Cussen (ehlana52(AT)hotmail.com), Feb 22 2001

Keywords

Comments

It is known that this sequence is always nonnegative - see references.
LCM(1,2,3...n) = n* LCM( binomial(n-1,0), binomial(n-1,1),..., binomial(n-1,n-1)) - see American Mathematical Monthly E2686. - Paul Mills, Feb 14 2002

Examples

			Let n=4. Then n*=12 and 2^(4-1)=8. Then we calculate 12-8=4 to be the second term of the sequence.
		

References

  • G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, pp. 12-13, Publications de l'Institut Cartan, 1990.

Crossrefs

Programs

  • Maple
    A059794 := n->lcm(seq(i,i=1..n))-2^(n-1);
  • Mathematica
    a[n_] := LCM @@ Range[n] - 2^(n-1); Table[a[n], {n, 1, 28}] (* Jean-François Alcover, Jul 05 2012 *)
  • PARI
    a(n) = lcm(vector(n, i, i)) - 2^(n-1); \\ Michel Marcus, Jan 26 2015

Extensions

Corrected and extended by Vladeta Jovovic, Feb 24 2001
References from Jean-Paul Allouche, Feb 17 2002

A068510 a(n) = lcm(1,...,n) - (product of primes <= n).

Original entry on oeis.org

0, 0, 0, 6, 30, 30, 210, 630, 2310, 2310, 25410, 25410, 330330, 330330, 330330, 690690, 11741730, 11741730, 223092870, 223092870, 223092870, 223092870, 5131136010, 5131136010, 26548051530, 26548051530, 80090340330, 80090340330
Offset: 1

Views

Author

N. J. A. Sloane, Mar 21 2002

Keywords

References

  • Tenenbaum, G. (2015). Introduction to analytic and probabilistic number theory, 3rd ed., American Mathematical Soc. See page 22.

Crossrefs

Programs

  • Maple
    a[1] := 0:a[2] := 0:l := 2:p := 3:pp := 2:for i from 3 to 50 do l := ilcm(l,i): if(p=i) then pp := pp*p:p := nextprime(p):end if: a[i] := l-pp:end do:q := seq(a[j],j=1..50);
  • Mathematica
    f[n_] := (LCM @@ Table[i, {i, n}] - Product[Prime[i], {i, PrimePi[n]}]); Table[f[n], {n, 30}]

Extensions

More terms from Sascha Kurz, Mar 23 2002
Showing 1-2 of 2 results.