A068522 In base 10 notation replace digits of n with their squared values (Version 2).
0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 10, 11, 14, 19, 26, 35, 46, 59, 74, 91, 40, 41, 44, 49, 56, 65, 76, 89, 104, 121, 90, 91, 94, 99, 106, 115, 126, 139, 154, 171, 160, 161, 164, 169, 176, 185, 196, 209, 224, 241, 250, 251, 254, 259
Offset: 0
Examples
a(13) = a(1*10^1 + 3*10^0) = 1^2*10^1 + 3^2*10^0 = 10 + 9 = 19. a(14) = a(1*10^1 + 4*10^0) = 1^2*10^1 + 4^2*10^0 = 10 + 16 = 26. a(48) = a(4*10^1 + 8*10^0) = 4^2*10^1 + 8^2*10^0 = 160 + 64 = 224.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Crossrefs
See A048385 for another version.
Programs
-
Haskell
a068522 0 = 0 a068522 n = 10 * a068522 n' + m ^ 2 where (n', m) = divMod n 10 -- Reinhard Zumkeller, Jul 08 2014
-
Maple
a:= n-> (s-> add(parse(s[-i])^2*10^(i-1), i=1..length(s)))(""||n): seq(a(n), n=0..70); # Alois P. Heinz, Jul 04 2014
-
Mathematica
FromDigits[IntegerDigits[#]^2] & /@ Range@ 53 (* Michael De Vlieger, Apr 01 2015 *)
Formula
a(n) = Sum_{i=0..g} d(i)*d(i)*10^i, where n = Sum_{d=0..9} d(i)*10^i is the decimal expansion of n.