cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068522 In base 10 notation replace digits of n with their squared values (Version 2).

Original entry on oeis.org

0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 10, 11, 14, 19, 26, 35, 46, 59, 74, 91, 40, 41, 44, 49, 56, 65, 76, 89, 104, 121, 90, 91, 94, 99, 106, 115, 126, 139, 154, 171, 160, 161, 164, 169, 176, 185, 196, 209, 224, 241, 250, 251, 254, 259
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 21 2002

Keywords

Examples

			a(13) = a(1*10^1 + 3*10^0) = 1^2*10^1 + 3^2*10^0 = 10 + 9 = 19.
a(14) = a(1*10^1 + 4*10^0) = 1^2*10^1 + 4^2*10^0 = 10 + 16 = 26.
a(48) = a(4*10^1 + 8*10^0) = 4^2*10^1 + 8^2*10^0 = 160 + 64 = 224.
		

Crossrefs

See A048385 for another version.

Programs

  • Haskell
    a068522 0 = 0
    a068522 n = 10 * a068522 n' + m ^ 2  where (n', m) = divMod n 10
    -- Reinhard Zumkeller, Jul 08 2014
  • Maple
    a:= n-> (s-> add(parse(s[-i])^2*10^(i-1), i=1..length(s)))(""||n):
    seq(a(n), n=0..70);  # Alois P. Heinz, Jul 04 2014
  • Mathematica
    FromDigits[IntegerDigits[#]^2] & /@ Range@ 53 (* Michael De Vlieger, Apr 01 2015 *)

Formula

a(n) = Sum_{i=0..g} d(i)*d(i)*10^i, where n = Sum_{d=0..9} d(i)*10^i is the decimal expansion of n.