A068555 Triangle read by rows in which row n contains (2i)!*(2j)!/(i!*j!*(i+j)!) for i + j = n, i = 0..n.
1, 2, 2, 6, 2, 6, 20, 4, 4, 20, 70, 10, 6, 10, 70, 252, 28, 12, 12, 28, 252, 924, 84, 28, 20, 28, 84, 924, 3432, 264, 72, 40, 40, 72, 264, 3432, 12870, 858, 198, 90, 70, 90, 198, 858, 12870, 48620, 2860, 572, 220, 140, 140, 220, 572, 2860, 48620, 184756, 9724
Offset: 0
Examples
From _Bruno Berselli_, Apr 27 2012: (Start) Triangle begins: 1; 2, 2; 6, 2, 6; 20, 4, 4, 20; 70, 10, 6, 10, 70; 252, 28, 12, 12, 28, 252; 924, 84, 28, 20, 28, 84, 924; 3432, 264, 72, 40, 40, 72, 264, 3432; 12870, 858, 198, 90, 70, 90, 198, 858, 12870; 48620, 2860, 572, 220, 140, 140, 220, 572, 2860, 48620; 184756, 9724, 1716, 572, 308, 252, 308, 572, 1716, 9724, 184756; ... (End) T(4,0) = A000984(4) = 70, T(4,1) = 4*20 - 70 = 10, T(4,2) = 4*4 - 10 = 6, T(4,3) = 4*4 - 6 = 10, T(4,4) = 4*20 - 10 = 70. - _Philippe Deléham_, Mar 10 2014
References
- R. K. Guy and Cal Long, Email to N. J. A. Sloane, Feb 22, 2002.
- Peter J. Larcombe and David R. French, On the integrality of the Catalan-Larcombe-French sequence 1,8,80,896,10816,.... Proceedings of the Thirty-second Southeastern International Conference on Combinatorics, Graph Theory and Computing (Baton Rouge, LA, 2001). Congr. Numer. 148 (2001), 65-91. MR1887375
- Umberto Scarpis, Sui numeri primi e sui problemi dell'analisi indeterminata in Questioni riguardanti le matematiche elementari, Nicola Zanichelli Editore (1924-1927, third edition), page 11.
Links
- Vincenzo Librandi, Rows n = 0..100, flattened
- J. W. Bober, Factorial ratios, hypergeometric series, and a family of step functions, 2007, arXiv:0709.1977v1 [math.NT]; J. London Math. Soc. (2) 79 (2009), 422-444.
- B. Buca and T. Prosen, Connected correlations, fluctuations and current of magnetization in the steady state of boundary driven XXZ spin chains, arXiv preprint arXiv:1509.04911 [cond-mat.stat-mech], 2015.
- Ira Gessel, Rational functions with nonnegative power series, (slides).
- Ira Gessel, Super ballot numbers.
- Thomas M. Richardson, The Reciprocal Pascal Matrix, arXiv preprint arXiv:1405.6315 [math.CO], 2014.
- Thomas M. Richardson, The Super Patalan Numbers, arXiv preprint arXiv:1410.5880 [math.CO], 2014.
- Thomas M. Richardson, The Super Patalan Numbers, J. Int. Seq. 18 (2015) # 15.3.3.
- Thomas M. Richardson, The three 'R's and Dual Riordan Arrays, arXiv:1609.01193 [math.CO], 2016.
- R. Sprugnoli, Riordan array proofs of identities in Gould's book.
Crossrefs
Programs
-
Magma
[Factorial(2*i)*Factorial(2*(n-i))/(Factorial(i)*Factorial(n)*Factorial(n-i)): i in [0..n], n in [0..10]]; // Bruno Berselli, Apr 27 2012
-
Maple
A068555 := proc(n,i) j := n-i ; (2*i)!*(2*j)!/(i!*j!*(i+j)!) ; end proc: # R. J. Mathar, May 31 2016
-
Mathematica
Flatten[ Table[ Table[ (2i)!*(2(n - i))!/(i!*(n - i)!*n!), {i, 0, n}], {n, 0, 9}]]
-
PARI
a(n,k)=if(n<0 || k<0,0,(2*n)!*(2*k)!/n!/k!/(n+k)!);
Formula
The square array defined by f := (a, b)->add(binomial(2*a, k)*binomial(2*b, a+b-k)*(-1)^(a+b-k), k=0..2*a); and read by antidiagonals gives a signed version. See Sprugnoli, 3.38.
Let f(x) = 1/sqrt(1 - 4*x) denote the o.g.f for A000984. The o.g.f. for this table is (f(x) + f(y))*f(x)*f(y)*(1/(1 + f(x)*f(y))) = (1 + 2*x + 6*x^2 + 20*x^3 + ...) + (2 + 2*x + 4*x^2 + 10*x^3 + ...)*y + (6 + 4*x + 6*x^2 + 12*x^3 + ...)*y^2 + .... - Peter Bala, Apr 10 2012
T(n,0) = A000984(n), T(n,k) = 4*T(n-1,k-1) - T(n,k-1) for k = 1..n. - Philippe Deléham, Mar 10 2014
Comments