cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068555 Triangle read by rows in which row n contains (2i)!*(2j)!/(i!*j!*(i+j)!) for i + j = n, i = 0..n.

Original entry on oeis.org

1, 2, 2, 6, 2, 6, 20, 4, 4, 20, 70, 10, 6, 10, 70, 252, 28, 12, 12, 28, 252, 924, 84, 28, 20, 28, 84, 924, 3432, 264, 72, 40, 40, 72, 264, 3432, 12870, 858, 198, 90, 70, 90, 198, 858, 12870, 48620, 2860, 572, 220, 140, 140, 220, 572, 2860, 48620, 184756, 9724
Offset: 0

Views

Author

N. J. A. Sloane, Mar 23 2002

Keywords

Comments

One of three infinite families of integral factorial ratio sequences of height 1 (see Bober, Theorem 1.2). The other two are A007318 and A046521. A related table is A182073. - Peter Bala, Apr 10 2012

Examples

			From _Bruno Berselli_, Apr 27 2012: (Start)
Triangle begins:
       1;
       2,    2;
       6,    2,    6;
      20,    4,    4,  20;
      70,   10,    6,  10,  70;
     252,   28,   12,  12,  28, 252;
     924,   84,   28,  20,  28,  84, 924;
    3432,  264,   72,  40,  40,  72, 264, 3432;
   12870,  858,  198,  90,  70,  90, 198,  858, 12870;
   48620, 2860,  572, 220, 140, 140, 220,  572,  2860, 48620;
  184756, 9724, 1716, 572, 308, 252, 308,  572,  1716,  9724, 184756; ...
(End)
T(4,0) = A000984(4) = 70, T(4,1) = 4*20 - 70 = 10, T(4,2) = 4*4 - 10 = 6, T(4,3) = 4*4 - 6 = 10, T(4,4) = 4*20 - 10 = 70. - _Philippe Deléham_, Mar 10 2014
		

References

  • R. K. Guy and Cal Long, Email to N. J. A. Sloane, Feb 22, 2002.
  • Peter J. Larcombe and David R. French, On the integrality of the Catalan-Larcombe-French sequence 1,8,80,896,10816,.... Proceedings of the Thirty-second Southeastern International Conference on Combinatorics, Graph Theory and Computing (Baton Rouge, LA, 2001). Congr. Numer. 148 (2001), 65-91. MR1887375
  • Umberto Scarpis, Sui numeri primi e sui problemi dell'analisi indeterminata in Questioni riguardanti le matematiche elementari, Nicola Zanichelli Editore (1924-1927, third edition), page 11.

Crossrefs

Apart perhaps from signs, diagonals give A000984, A002420, A078718.
Cf. A182411, A082590 (row sums).

Programs

  • Magma
    [Factorial(2*i)*Factorial(2*(n-i))/(Factorial(i)*Factorial(n)*Factorial(n-i)): i in [0..n], n in [0..10]]; // Bruno Berselli, Apr 27 2012
  • Maple
    A068555 := proc(n,i)
        j := n-i ;
        (2*i)!*(2*j)!/(i!*j!*(i+j)!) ;
    end proc: # R. J. Mathar, May 31 2016
  • Mathematica
    Flatten[ Table[ Table[ (2i)!*(2(n - i))!/(i!*(n - i)!*n!), {i, 0, n}], {n, 0, 9}]]
  • PARI
    a(n,k)=if(n<0 || k<0,0,(2*n)!*(2*k)!/n!/k!/(n+k)!);
    

Formula

The square array defined by f := (a, b)->add(binomial(2*a, k)*binomial(2*b, a+b-k)*(-1)^(a+b-k), k=0..2*a); and read by antidiagonals gives a signed version. See Sprugnoli, 3.38.
Let f(x) = 1/sqrt(1 - 4*x) denote the o.g.f for A000984. The o.g.f. for this table is (f(x) + f(y))*f(x)*f(y)*(1/(1 + f(x)*f(y))) = (1 + 2*x + 6*x^2 + 20*x^3 + ...) + (2 + 2*x + 4*x^2 + 10*x^3 + ...)*y + (6 + 4*x + 6*x^2 + 12*x^3 + ...)*y^2 + .... - Peter Bala, Apr 10 2012
T(n,0) = A000984(n), T(n,k) = 4*T(n-1,k-1) - T(n,k-1) for k = 1..n. - Philippe Deléham, Mar 10 2014