A068588 Treated as strings, n and its reversal are substrings of 2^n.
6, 10, 44, 49, 60, 67, 190, 191, 226, 252, 321, 373, 430, 521, 551, 609, 613, 660, 666, 680, 697, 703, 727, 730, 742, 750, 777, 805, 810, 838, 842, 847, 851, 861, 879, 889, 905, 913, 919, 920, 944, 949, 950, 959, 968, 973, 982
Offset: 1
Examples
2^49 = 562949953421312 in which both 49 and its reversal 94 appear as substrings, so 49 belongs to the sequence.
Links
- Joseph L. Pe, Fixated Points of Arithmetical Functions.
Programs
-
Mathematica
Do[m = 2^n; If[StringPosition[ToString[m], ToString[n]] != {} && StringPosition[ToString[m], ToString[FromDigits[Reverse[IntegerDigits[n]]]]] != {}, Print[n]], {n, 1, 1000}] sbsQ[n_]:=Module[{c=IntegerDigits[2^n]},SequenceCount[c,IntegerDigits[n]]>0 && SequenceCount[c,IntegerDigits[IntegerReverse[n]]]>0]; Select[Range[1000],sbsQ] (* Harvey P. Dale, May 08 2022 *)
Comments