A068626 a(3n) = a(3n-1) = 3*n^2, a(3n-2) = 3*n^2 - 3*n + 1.
1, 3, 3, 7, 12, 12, 19, 27, 27, 37, 48, 48, 61, 75, 75, 91, 108, 108, 127, 147, 147, 169, 192, 192, 217, 243, 243, 271, 300, 300, 331, 363, 363, 397, 432, 432, 469, 507, 507, 547, 588, 588, 631, 675, 675, 721, 768, 768, 817, 867, 867, 919, 972, 972, 1027, 1083, 1083, 1141
Offset: 1
Links
- B. D. Swan, Table of n, a(n) for n = 1..90000
- Index entries for linear recurrences with constant coefficients, signature (1,0,2,-2,0,-1,1).
Crossrefs
Cf. A091684 (first differences).
Programs
-
Magma
[(n mod 3 eq 1) select (n+2)^2/3 - n-1 else (n+((n mod 3)^2) mod 3 )^2/3 : n in [1..50]]; // Marius A. Burtea, Feb 19 2020
-
Mathematica
LinearRecurrence[{1,0,2,-2,0,-1,1},{1,3,3,7,12,12,19},60] (* Harvey P. Dale, Jun 29 2022 *)
-
PARI
Vec(x*(1 + 2*x + 2*x^3 + x^4) / ((1 - x)^3*(1 + x + x^2)^2) + O(x^50)) \\ Colin Barker, Feb 19 2020
-
Perl
my @a = (1); for (my $n = 1; $n <= 90000; $n ++) { $a[$n] = $a[$n - 1] + ($a[$n - 1] % $n != 0 ? $n : 0); print "$n $a[$n]\n"; } # Georg Fischer Feb 18 2020
Formula
From Colin Barker, Feb 18 2020: (Start)
G.f.: x*(1 + 2*x + 2*x^3 + x^4) / ((1 - x)^3*(1 + x + x^2)^2).
a(n) = a(n-1) + 2*a(n-3) - 2*a(n-4) - a(n-6) + a(n-7) for n>7.
(End)
Sum_{n>=1} 1/a(n) = Pi/sqrt(3)*tanh(Pi/(2*sqrt(3))) + Pi^2/9. - Amiram Eldar, Sep 21 2023
Extensions
Entry revised by N. J. A. Sloane, Mar 13 2006
Comments