A068652 Numbers such that every cyclic permutation is a prime.
2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, 97, 113, 131, 197, 199, 311, 337, 373, 719, 733, 919, 971, 991, 1193, 1931, 3119, 3779, 7793, 7937, 9311, 9377, 11939, 19391, 19937, 37199, 39119, 71993, 91193, 93719, 93911, 99371, 193939, 199933, 319993
Offset: 1
Examples
197 is a member as all the three cyclic permutations 197,971,719 are primes.
Links
- Ray Chandler, Table of n, a(n) for n = 1..57
- K. S. Brown, On General Palindromic Numbers
- C. K. Caldwell, Circular Primes
- Patrick De Geest, Circular Primes
- H. Heinz, Prime Patterns (Illustration using 19937)
- Gianni A. Sarcone, Tourbillonnants nombres premiers, Tangente Web Site, No date.
- Wikipedia, Circular prime
Programs
-
Mathematica
fQ[p_] := Module[{b = IntegerDigits[p]}, And @@ Table[PrimeQ[FromDigits[b = RotateLeft[b]]], {Length[b] - 1}]]; Select[Prime[Range[100000]], fQ] (* T. D. Noe, Mar 22 2012 *) ecppQ[n_]:=AllTrue[FromDigits/@Table[RotateLeft[IntegerDigits[n],i],{i, IntegerLength[n]}],PrimeQ]; Select[Range[400000],ecppQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Nov 25 2015 *)
Extensions
More terms from Martin Renner, Apr 10 2002
Comments