A068660 Primes formed from the concatenation of k, k+1 and k for some k.
787, 9109, 111211, 131413, 333433, 373837, 394039, 414241, 474847, 575857, 596059, 616261, 697069, 717271, 777877, 798079, 818281, 838483, 101102101, 103104103, 129130129, 149150149, 181182181, 187188187, 189190189, 191192191, 193194193, 207208207, 217218217
Offset: 1
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harvey P. Dale)
Crossrefs
These are the primes in A261618. - M. F. Hasler, Nov 25 2015
Programs
-
Magma
[m: n in [2..300] | IsPrime(m) where m is Seqint(Intseq(n) cat Intseq(n+1) cat Intseq(n))]; // Vincenzo Librandi, Sep 28 2015
-
Maple
ncat:= (a,b) -> a*10^(1+ilog10(b))+b: select(isprime, [seq(ncat(n,ncat(n+1,n)),n=1..1000,2)]); # Robert Israel, Oct 23 2015
-
Mathematica
concat[n_]:=Module[{idn=IntegerDigits[n]},FromDigits[Join[idn, IntegerDigits[ n+1],idn]]]; Select[concat/@Range[200],PrimeQ] (* Harvey P. Dale, Aug 20 2014 *) A = Table[(n*10^(Floor[Log[10, 10(n+1)]])+(n+1))*10^(Floor[Log[10, 10(n)]])+n, {n, 1, 120}]; Select[A, PrimeQ] (* José de Jesús Camacho Medina, Sep 09 2015 *) Select[Table[FromDigits[Join[Flatten[IntegerDigits[{n, n + 1, n}]]]], {n, 200}], PrimeQ] (* Vincenzo Librandi, Sep 28 2015 *)
-
PARI
for(n=1, 1e3, if(isprime(k=eval(Str(n, n+1, n))), print1(k", "))) \\ Altug Alkan, Sep 28 2015
-
Python
from sympy import isprime def aupto(N): return [t for t in (int(str(k)+str(k+1)+str(k)) for k in range(1, N+1, 2)) if isprime(t)] print(aupto(217)) # Michael S. Branicky, Jul 09 2021
Comments