cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068679 Numbers which yield a prime whenever a 1 is inserted anywhere in them (including at the beginning or end).

Original entry on oeis.org

1, 3, 7, 13, 31, 49, 63, 81, 91, 99, 103, 109, 117, 123, 151, 181, 193, 213, 231, 279, 319, 367, 427, 459, 571, 601, 613, 621, 697, 721, 801, 811, 951, 987, 1113, 1117, 1131, 1261, 1821, 1831, 1939, 2101, 2149, 2211, 2517, 2611, 3151, 3219, 4011, 4411, 4519, 4887, 5031, 5361, 6231, 6487, 6871, 7011, 7209, 8671, 9141, 9801, 10051
Offset: 1

Views

Author

Amarnath Murthy, Mar 02 2002

Keywords

Comments

If R(p) = (10^p-1)/9 is a prime then (10^(p-1)-1)/9 belongs to this sequence.

Examples

			123 belongs to this sequence as the numbers 1123, 1213, 1231 obtained by inserting a 1 in all possible ways are all primes.
		

Crossrefs

Programs

  • Mathematica
    d[n_]:=IntegerDigits[n]; ins[n_]:=FromDigits/@Table[Insert[d[n],1,k],{k,Length[d[n]]+1}]; Select[Range[10060],And@@PrimeQ/@ins[#] &] (* Jayanta Basu, May 20 2013 *)
    Select[Range[11000],AllTrue[FromDigits/@Table[Insert[ IntegerDigits[ #],1,n],{n,IntegerLength[#]+1}],PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 16 2020 *)
  • Python
    from sympy import isprime
    A068679_list, n = [], 1
    while len(A068679_list) < 1000:
        if isprime(10*n+1):
            s = str(n)
            for i in range(len(s)):
                if not isprime(int(s[:i]+'1'+s[i:])):
                    break
            else:
                A068679_list.append(n)
        n += 1 # Chai Wah Wu, Oct 02 2019

Extensions

More terms from Eli McGowan (ejmcgowa(AT)mail.lakeheadu.ca), Apr 11 2002
More terms from Vladeta Jovovic, Apr 16 2002