cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A068689 Primes which are a sandwich of numbers made of only one decimal digit between two 9's.

Original entry on oeis.org

919, 929, 9222229, 9888889, 9222222222229, 9888888888888888888888888888888888888888888888888888888888888888888888889
Offset: 1

Views

Author

Amarnath Murthy, Mar 02 2002

Keywords

Comments

Conjecture: Inner digits 1, 2 and 8 are the only repeating digits for which the resulting numbers can be prime for outer digits 9. I.e., 9444..4449, 9555..5559, 9777..7779 are composite. The cases for inner digits 0, 3, 6 and 9 give composite numbers. - Cino Hilliard, Jul 11 2005
a(13) has 1141 digits. - Michael S. Branicky, Jan 28 2023

Crossrefs

Programs

  • PARI
    lista(nn) = my(list = List(), p); for (n=1, nn, for (k=1, 8, my(d=vector(n, i, k)); d = concat(9, d); d = concat(d, 9); if (ispseudoprime(p=fromdigits(d)), listput(list, p)););); Vec(list); \\ Michel Marcus, Jan 28 2023
    
  • Python
    from sympy import isprime
    from itertools import count, islice
    def agen(): yield from (t for i in count(1) for m in "124578" if isprime(t:=int("9" + m*i + "9")))
    print(list(islice(agen(), 11))) # Michael S. Branicky, Jan 28 2023

Extensions

More terms from Sascha Kurz, Mar 17 2002

A068688 Primes which are a sandwich of numbers made of only one digit between two 7's.

Original entry on oeis.org

727, 757, 787, 797, 72227, 75557, 76667, 78887, 79997, 7666667, 722222227, 74444444447, 75555555557, 755555555555555555557, 75555555555555555555557, 72222222222222222222222222227, 79999999999999999999999999997, 7444444444444444444444444444447
Offset: 1

Views

Author

Amarnath Murthy, Mar 02 2002

Keywords

Comments

The middle digit is never 0, 1, 3, or 7. - Harvey P. Dale, May 05 2018
a(40) has 1213 digits. - Michael S. Branicky, Jan 28 2023

Crossrefs

Programs

  • Mathematica
    Select[Flatten[Table[10FromDigits[PadRight[{7},n,i]]+7,{n,2,100},{i,9}]],PrimeQ] (* Harvey P. Dale, May 05 2018 *)
  • Python
    from sympy import isprime
    from itertools import count, islice
    def agen(): yield from (t for i in count(1) for m in "0123456789" if isprime(t:=int("7" + m*i + "7")))
    print(list(islice(agen(), 30))) # Michael S. Branicky, Jan 28 2023

Extensions

More terms from Sascha Kurz, Mar 17 2002
Showing 1-2 of 2 results.