cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A068744 Number of potential flows in 3 X 3 array with integer velocities in -n..n, i.e., number of 3 X 3 arrays with adjacent elements differing by no more than n, counting arrays differing by a constant only once.

Original entry on oeis.org

1, 1665, 87825, 1253329, 9230193, 45642289, 172989921, 542131425, 1473095713, 3582226465, 7970825457, 16492629297, 32119620625, 59427841617, 105227044417, 179360179905, 295700892993, 473379359425, 738268965841
Offset: 0

Views

Author

R. H. Hardin, Feb 27 2002

Keywords

Comments

Let y = 2*n - 1; Then apparently a(n) = y^2*(529*y^6 + 910*y^4 + 721*y^2 + 360)/2520. See A068745 (4 X 4) and A063496 (2 X 2), which is y*(2*y^2 + 1)/3 under the same transformation. Suggests total degree N X N-1, with a factor y or y^2 to make the remaining polynomial even. - R. H. Hardin, Jan 02 2007

Crossrefs

2 X 2 A063496, 4 X 4 A068745, 5 X 5 A068746, 6 X 6 A068747, by velocity limit 1..14 A068748-A068761, solenoidal flows A068722-A068738.

Formula

Empirical G.f.: -(x^8+1656*x^7 +72876*x^6 +522760*x^5 +972198*x^4 +522760*x^3 +72876*x^2 +1656*x +1)/(x-1)^9. [Colin Barker, Jul 31 2012]
Empirical: 315*a(n) = (4232*n^6 +12696*n^5 +17690*n^4 +14220*n^3 +7058*n^2 +2064*n +315) *(1+2*n)^2. - R. J. Mathar, Nov 09 2018

A068747 Number of potential flows in 6 X 6 array with integer velocities in -n..n, i.e., number of 6 X 6 arrays with adjacent elements differing by no more than n, counting arrays differing by a constant only once.

Original entry on oeis.org

1, 12961320464027, 379827509377146575439, 40918963843906494595507077
Offset: 0

Views

Author

R. H. Hardin, Feb 27 2002

Keywords

Crossrefs

Cf. 2 X 2 A063496, 3 X 3 A068744, 4 X 4 A068745, 5 X 5 A068746, by velocity limit 1..14 A068748-A068761, solenoidal flows A068722-A068738.

A068745 Number of potential flows in 4 X 4 array with integer velocities in -n..n, i.e., number of 4 X 4 arrays with adjacent elements differing by no more than n, counting arrays differing by a constant only once.

Original entry on oeis.org

1, 690437, 1133641543, 164185416899, 6913624013061, 138190481342321, 1678843050246451, 14285299502131463, 93044501704039945, 492225938556374973, 2204710243834695807, 8617480381892283531
Offset: 0

Views

Author

R. H. Hardin, Feb 27 2002

Keywords

Crossrefs

2 X 2 A063496, 3 X 3 A068744, 5 X 5 A068746, 6 X 6 A068747, by velocity limit 1..14 A068748-A068761, solenoidal flows A068722-A068738.
Cf. 4 X 4 this sequence (degree 4*4-1) with factor 2n-1 ; 3 X 3 A068744 (degree 3*3-1) with factor (2n-1)^2 ; 2 X 2 A063496 (degree 2*2-1) with factor 2n-1.

Formula

Let y = 2*n - 1; it appears that a(n) = y*(2623243666*y^14 + 9598591135*y^12 + 17180805187*y^10 + 20342655905*y^8 + 17636121503*y^6 + 10907793260*y^4 + 3135618144*y^2 + 304819200)/81729648000. - R. H. Hardin, Jan 01 2007

A068746 Number of potential flows in 5 X 5 array with integer velocities in -n..n, i.e., number of 5 X 5 arrays with adjacent elements differing by no more than n, counting arrays differing by a constant only once.

Original entry on oeis.org

1, 1366395515, 184422574177355, 523957519578572209, 207345516734034667209, 24953087551680958151267, 1354915464537160758459123
Offset: 0

Views

Author

R. H. Hardin, Feb 27 2002

Keywords

Crossrefs

2 X 2 A063496, 3 X 3 A068744, 4 X 4 A068745, 6 X 6 A068747, by velocity limit 1..14 A068748-A068761, solenoidal flows A068722-A068738.

A222169 T(n,k)=Number of nXk 0..4 arrays with entries increasing mod 5 by 0, 1 or 2 rightwards and downwards, starting with upper left zero.

Original entry on oeis.org

1, 3, 3, 9, 19, 9, 27, 121, 121, 27, 81, 771, 1665, 771, 81, 243, 4913, 22979, 22979, 4913, 243, 729, 31307, 317259, 690437, 317259, 31307, 729, 2187, 199497, 4380445, 20780181, 20780181, 4380445, 199497, 2187, 6561, 1271251, 60481881, 625649047
Offset: 1

Views

Author

R. H. Hardin Feb 10 2013

Keywords

Comments

Table starts
......1..........3..............9.................27.....................81
......3.........19............121................771...................4913
......9........121...........1665..............22979.................317259
.....27........771..........22979.............690437...............20780181
.....81.......4913.........317259...........20780181.............1366395515
....243......31307........4380445..........625649047............89948464453
....729.....199497.......60481881........18838482047..........5923189816253
...2187....1271251......835088891.......567241901289........390086038882651
...6561....8100769....11530288395.....17080173559277......25690815631493191
..19683...51620379...159201677509....514300085627023....1691995329032459285
..59049..328939577..2198138788809..15486061794514775..111434983000652039093
.177147.2096095523.30350271502115.466299978310573033.7339124863989795685471

Examples

			Some solutions for n=3 k=4
..0..1..3..3....0..2..3..3....0..1..2..4....0..1..3..4....0..0..0..1
..2..3..0..0....0..2..4..4....1..2..3..4....1..3..4..1....0..2..2..2
..4..0..0..0....2..4..4..0....1..2..3..4....3..4..4..1....0..2..2..3
		

Crossrefs

Diagonal is A068748
Column 1 is A000244(n-1)
Column 2 is A138977
Column 3 is A138978
Column 4 is A138979

Formula

Empirical for column k:
k=1: a(n) = 3*a(n-1)
k=2: a(n) = 7*a(n-1) -4*a(n-2)
k=3: a(n) = 16*a(n-1) -31*a(n-2) +10*a(n-3)
k=4: [order 10]
k=5: [order 25]
k=6: [order 70]
Showing 1-5 of 5 results.