A068781 Lesser of two consecutive numbers each divisible by a square.
8, 24, 27, 44, 48, 49, 63, 75, 80, 98, 99, 116, 120, 124, 125, 135, 147, 152, 168, 171, 175, 188, 207, 224, 242, 243, 244, 260, 275, 279, 288, 296, 315, 324, 332, 342, 343, 350, 351, 360, 363, 368, 375, 387, 404, 423, 424, 440, 459, 475, 476, 495, 507, 512
Offset: 1
Keywords
Examples
44 is in the sequence because 44 = 2^2 * 11 and 45 = 3^2 * 5. From _Gus Wiseman_, Sep 14 2024: (Start) Splitting nonsquarefree numbers into maximal anti-runs gives: (4,8) (9,12,16,18,20,24) (25,27) (28,32,36,40,44) (45,48) (49) (50,52,54,56,60,63) (64,68,72,75) (76,80) (81,84,88,90,92,96,98) (99) The maxima are a(n). The corresponding pairs are (8,9), (24,25), (27,28), (44,45), etc. (End)
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Kaisa Matomäki, Maksym Radziwiłł and Terence Tao, Sign patterns of the Liouville and Möbius functions, Forum of Mathematics, Sigma, Vol. 4. (2016), e14.
Crossrefs
Subsequence of A261869.
Programs
-
Haskell
a068781 n = a068781_list !! (n-1) a068781_list = filter ((== 0) . a261869) [1..] -- Reinhard Zumkeller, Sep 04 2015
-
Mathematica
Select[ Range[2, 600], Max[ Transpose[ FactorInteger[ # ]] [[2]]] > 1 && Max[ Transpose[ FactorInteger[ # + 1]] [[2]]] > 1 &] f@n_:= Flatten@Position[Partition[SquareFreeQ/@Range@2000,n,1], Table[False,{n}]]; f@2 (* Hans Rudolf Widmer, Aug 30 2022 *) Max/@Split[Select[Range[100], !SquareFreeQ[#]&],#1+1!=#2&]//Most (* Gus Wiseman, Sep 14 2024 *)
-
PARI
isok(m) = !moebius(m) && !moebius(m+1); \\ Michel Marcus, Feb 14 2021
Formula
A261869(a(n)) = 0. - Reinhard Zumkeller, Sep 04 2015
Comments