A068803 Smaller of two consecutive primes which have no common digits.
2, 3, 5, 7, 19, 29, 37, 47, 59, 79, 97, 397, 499, 599, 1999, 2999, 3989, 4999, 29989, 49999, 59999, 79999, 199999, 599999, 799999, 2999999, 4999999, 5999993, 19999999, 29999999, 59999999, 69999989, 99999989, 199999991, 699999953, 799999999, 5999999989, 6999999989
Offset: 1
Examples
397 is a term as 397 and 401 are two consecutive primes with no common digits.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..804
Crossrefs
Cf. A076490.
Programs
-
Mathematica
First /@ Select[Partition[Prime[Range[10^6]], 2, 1], Intersection @@ IntegerDigits /@ # == {} &] (* Jayanta Basu, Aug 06 2013 *)
-
PARI
isok(p) = isprime(p) && (#setintersect(Set(digits(p)), Set(digits(nextprime(p+1)))) == 0); \\ Michel Marcus, Mar 27 2023
-
Python
from itertools import count, islice from sympy import nextprime, prevprime def agen(): # generator of terms yield from [2, 3, 5] for d in count(2): for b in range(10**(d-1), 10**d, 10**(d-1)): p, q = prevprime(b), nextprime(b) if set(str(p)) & set(str(q)) == set(): yield p print(list(islice(agen(), 40))) # Michael S. Branicky, May 09 2023
Extensions
More terms from Larry Soule (lsoule(AT)gmail.com), Jun 21 2006
a(36) and beyond from Michael S. Branicky, May 09 2023
Comments