A068811 Numbers k such that k and its 10's complement (10^d-k, where d is the number of digits in k) are both primes.
3, 5, 7, 11, 17, 29, 41, 47, 53, 59, 71, 83, 89, 97, 113, 137, 173, 179, 191, 227, 239, 257, 281, 317, 347, 353, 359, 383, 401, 431, 443, 479, 491, 509, 521, 557, 569, 599, 617, 641, 647, 653, 683, 719, 743, 761, 773, 809, 821, 827, 863, 887, 911, 929, 941
Offset: 1
Examples
47 is a prime; the smallest power of 10 exceeding 47 is 100 and 100 - 47 = 53 is prime. Therefore 47 is in the sequence. 641 is a term as 641 and 1000-641 = 359 are primes.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..20000 [First 1000 terms from Vincenzo Librandi]
Crossrefs
Cf. A145985.
Programs
-
Maple
a:=[]; for i from 1 to 1000 do p:=ithprime(i); d:=length(p); q:=10^d-p; if isprime(q) then a:=[op(a),p]; fi; od: a; # N. J. A. Sloane, Dec 18 2022
-
Mathematica
Select[Prime[Range[160]], PrimeQ[10^(Floor[Log[10, # ]] + 1) - # ] &] (* Stefan Steinerberger, Jun 15 2007 *)
-
PARI
is_A068811(p)= isprime(10^#Str(p)-p) & isprime(p) \\ M. F. Hasler, May 01 2012
-
PARI
for(d=1, 4, forprime(p=10^(d-1), 10^d, if(isprime(10^d-p), print1(p", ")))) \\ Charles R Greathouse IV, May 01 2012
-
Sage
[p for p in prime_range(100) if is_prime(10^p.ndigits()-p)] # Giuseppe Coppoletta, Jul 24 2016
Extensions
Corrected by Jason Earls, May 25 2002
Edited by N. J. A. Sloane, Sep 18 2008 at the suggestion of R. J. Mathar
Comments