A068857 a(0) = 0, a(1) = 8; for n>=2: a(n) = smallest multiple of a(n-1) which is of the form 2k*(2k+2).
0, 8, 24, 48, 288, 16128, 11950848, 4636929024, 88106288385024, 8038489644431643930624, 15177535939786079616000991061008232448, 40096515501441989312471498490435884509054125751527350190658560000
Offset: 0
Keywords
Examples
24 = 4*6 is a member and the smallest multiple of 24 which is of the form 2k(2k+2) is 48 = 6*8.
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..14
Programs
-
Mathematica
m = 0; {0} ~Join~ Rest@ NestList[(m++; While[! Divisible[Set[k, # (# + 2) &[2 m]], #], m++]; k) &, 1, 8] (* Michael De Vlieger, Mar 18 2024 *)
-
Python
from itertools import islice from sympy import sqrt_mod_iter def A068857_gen(): # generator of terms yield 0 a = 8 while True: yield a b = a+1 for d in sqrt_mod_iter(1,a): if d==1 or d**2-1 == a: d += a if d&1 and d < b: b = d a = b**2-1 A068857_list = list(islice(A068857_gen(),11)) # Chai Wah Wu, May 05 2024
Formula
a(n) = 8 * A068776(n-1) for n>=1.
Extensions
More terms from Sascha Kurz, Mar 23 2002
a(8) onward corrected by Sean A. Irvine, Mar 18 2024
a(10)-a(11) from Alois P. Heinz, Mar 19 2024