cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068930 Number of incongruent ways to tile a 5 X 2n room with 1x2 Tatami mats. At most 3 Tatami mats may meet at a point.

Original entry on oeis.org

4, 2, 1, 1, 1, 2, 2, 3, 3, 5, 5, 8, 9, 13, 15, 22, 26, 37, 45, 63, 78, 108, 136, 186, 237, 322, 414, 559, 724, 973, 1267, 1697, 2219, 2964, 3888, 5183, 6815, 9071, 11949, 15886, 20955, 27835, 36755, 48790, 64476, 85545, 113115, 150021, 198460, 263136
Offset: 1

Views

Author

Dean Hickerson, Mar 11 2002

Keywords

Crossrefs

Cf. A068924 for total number of tilings, A068926 for more info.
Cf. A005683.

Programs

  • Mathematica
    Join[{4,2},LinearRecurrence[{0,1,1,1,0,0,-1,-1,-1},{1,1,1,2,2,3,3,5,5},50]] (* Harvey P. Dale, Nov 21 2014 *)

Formula

For n >= 12, a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-7) - a(n-8) - a(n-9).
G.f.: x*(4+x^10+5*x^9+4*x^8+3*x^7-x^6-2*x^5-6*x^4-5*x^3 -3*x^2+2*x) / ((x^3+x^2-1)*(x^6+x^4-1)). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009
a(n) = sum(A102541(n-k-2, n-2*k-4), k=0..floor((n-4)/2)), n >= 4. - Johannes W. Meijer, Aug 24 2013

Extensions

G.f. proposed by Maksym Voznyy checked and corrected by R. J. Mathar, Sep 16 2009.