A068997 Numbers k such that Sum_{d|k} d*mu(d) divides k.
1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 32, 36, 40, 48, 54, 64, 72, 80, 84, 96, 100, 108, 120, 128, 144, 160, 162, 168, 192, 200, 216, 240, 252, 256, 272, 288, 312, 320, 324, 336, 360, 384, 400, 432, 440, 480, 486, 500, 504, 512, 544, 576, 588, 600, 624, 640, 648
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
Programs
-
Haskell
a068997 n = a068997_list !! (n - 1) a068997_list = filter (\x -> mod x (a173557 x) == 0) [1..] -- Reinhard Zumkeller, Jun 01 2015
-
Maple
with(numtheory): A068997 := i->`if`(i mod phi(mul(j,j=factorset(i)))=0,i,NULL): seq(A068997(i),i=1..650); # Peter Luschny, Nov 02 2010
-
Mathematica
Select[Range[650], Divisible[#, DivisorSum[#, # MoebiusMu[#] &]] &] (* Michael De Vlieger, Nov 20 2017 *) q[1] =True; q[n_] := Divisible[n, Times @@ ((First[#] - 1) & /@ FactorInteger[n])]; Select[Range[650], q] (* Amiram Eldar, Apr 19 2025 *)
-
PARI
for(n=1,1000,if(n%sumdiv(n,d,moebius(d)*d)==0,print1(n,",")))
-
PARI
isok(k) = !(k % vecprod(apply(x -> 1-x, factor(k)[, 1]))); \\ Amiram Eldar, Apr 19 2025
Comments