A069006 Let M denote the 5 X 5 matrix with rows /1,1,1,1,1/1,1,1,1,0/1,1,1,0,0/1,1,0,0,0/1,0,0,0,0/ and A(n) = vector (x(n),y(n),z(n),t(n),u(n)) = M^n*A where A is the vector (1,1,1,1,1); then a(n) = t(n).
1, 2, 9, 29, 105, 365, 1287, 4516, 15873, 55759, 195910, 688286, 2418195, 8495917, 29849041, 104869718, 368442700, 1294463368, 4547886208, 15978257251, 56137003923, 197228218022, 692929213991, 2434493909304, 8553197751125
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (3,3,-4,-1,1).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{3,3,-4,-1,1},{1,2,9,29,105},30] (* Harvey P. Dale, Apr 16 2015 *)
Formula
G.f.:(1-x)/(1-x^5+x^4+4*x^3-3*x^2-3*x). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 12 2009
a(n) = 3*a(n-1) + 3*a(n-2) - 4*a(n-3) - a(n-4) + a(n-5), n >= 0, with a(-5)=0, a(-4)=-1, a(-3)=a(-2)=a(-1)=0. - Wolfdieter Lang, Nov 04 2013
Extensions
Edited by Henry Bottomley, May 06 2002
Comments